Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

8y^{2}x+x^{2}dy^{3}-16x^{2}y-2dx^{3}y^{2}=\theta
Use the distributive property to multiply y^{2}-2xy by 8x+x^{2}dy.
x^{2}dy^{3}-16x^{2}y-2dx^{3}y^{2}=\theta -8y^{2}x
Subtract 8y^{2}x from both sides.
x^{2}dy^{3}-2dx^{3}y^{2}=\theta -8y^{2}x+16x^{2}y
Add 16x^{2}y to both sides.
\left(x^{2}y^{3}-2x^{3}y^{2}\right)d=\theta -8y^{2}x+16x^{2}y
Combine all terms containing d.
\left(x^{2}y^{3}-2y^{2}x^{3}\right)d=\theta +16yx^{2}-8xy^{2}
The equation is in standard form.
\frac{\left(x^{2}y^{3}-2y^{2}x^{3}\right)d}{x^{2}y^{3}-2y^{2}x^{3}}=\frac{\theta +16yx^{2}-8xy^{2}}{x^{2}y^{3}-2y^{2}x^{3}}
Divide both sides by x^{2}y^{3}-2x^{3}y^{2}.
d=\frac{\theta +16yx^{2}-8xy^{2}}{x^{2}y^{3}-2y^{2}x^{3}}
Dividing by x^{2}y^{3}-2x^{3}y^{2} undoes the multiplication by x^{2}y^{3}-2x^{3}y^{2}.
d=\frac{\theta +16yx^{2}-8xy^{2}}{\left(y-2x\right)\left(xy\right)^{2}}
Divide \theta -8y^{2}x+16x^{2}y by x^{2}y^{3}-2x^{3}y^{2}.