( y ^ { 2 } - 2 x y ) ( 8 x + x ^ { 2 } d y ) = \theta
Solve for d
\left\{\begin{matrix}d=-\frac{8xy^{2}-16yx^{2}-\theta }{\left(y-2x\right)\left(xy\right)^{2}}\text{, }&x\neq 0\text{ and }y\neq 2x\text{ and }y\neq 0\\d\in \mathrm{R}\text{, }&\left(x=0\text{ or }y=2x\text{ or }y=0\right)\text{ and }\theta =0\end{matrix}\right.
Share
Copied to clipboard
8y^{2}x+x^{2}dy^{3}-16x^{2}y-2dx^{3}y^{2}=\theta
Use the distributive property to multiply y^{2}-2xy by 8x+x^{2}dy.
x^{2}dy^{3}-16x^{2}y-2dx^{3}y^{2}=\theta -8y^{2}x
Subtract 8y^{2}x from both sides.
x^{2}dy^{3}-2dx^{3}y^{2}=\theta -8y^{2}x+16x^{2}y
Add 16x^{2}y to both sides.
\left(x^{2}y^{3}-2x^{3}y^{2}\right)d=\theta -8y^{2}x+16x^{2}y
Combine all terms containing d.
\left(x^{2}y^{3}-2y^{2}x^{3}\right)d=\theta +16yx^{2}-8xy^{2}
The equation is in standard form.
\frac{\left(x^{2}y^{3}-2y^{2}x^{3}\right)d}{x^{2}y^{3}-2y^{2}x^{3}}=\frac{\theta +16yx^{2}-8xy^{2}}{x^{2}y^{3}-2y^{2}x^{3}}
Divide both sides by x^{2}y^{3}-2x^{3}y^{2}.
d=\frac{\theta +16yx^{2}-8xy^{2}}{x^{2}y^{3}-2y^{2}x^{3}}
Dividing by x^{2}y^{3}-2x^{3}y^{2} undoes the multiplication by x^{2}y^{3}-2x^{3}y^{2}.
d=\frac{\theta +16yx^{2}-8xy^{2}}{\left(y-2x\right)\left(xy\right)^{2}}
Divide \theta -8y^{2}x+16x^{2}y by x^{2}y^{3}-2x^{3}y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}