Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+25y+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-25±\sqrt{25^{2}-4\times 4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-25±\sqrt{625-4\times 4}}{2}
Square 25.
y=\frac{-25±\sqrt{625-16}}{2}
Multiply -4 times 4.
y=\frac{-25±\sqrt{609}}{2}
Add 625 to -16.
y=\frac{\sqrt{609}-25}{2}
Now solve the equation y=\frac{-25±\sqrt{609}}{2} when ± is plus. Add -25 to \sqrt{609}.
y=\frac{-\sqrt{609}-25}{2}
Now solve the equation y=\frac{-25±\sqrt{609}}{2} when ± is minus. Subtract \sqrt{609} from -25.
y^{2}+25y+4=\left(y-\frac{\sqrt{609}-25}{2}\right)\left(y-\frac{-\sqrt{609}-25}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-25+\sqrt{609}}{2} for x_{1} and \frac{-25-\sqrt{609}}{2} for x_{2}.