Solve for y
y=-3
Graph
Share
Copied to clipboard
\left(y+3\right)^{2}-\left(y+2\right)\left(y-2\right)=2y+1
Multiply y+3 and y+3 to get \left(y+3\right)^{2}.
y^{2}+6y+9-\left(y+2\right)\left(y-2\right)=2y+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
y^{2}+6y+9-\left(y^{2}-4\right)=2y+1
Consider \left(y+2\right)\left(y-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
y^{2}+6y+9-y^{2}+4=2y+1
To find the opposite of y^{2}-4, find the opposite of each term.
6y+9+4=2y+1
Combine y^{2} and -y^{2} to get 0.
6y+13=2y+1
Add 9 and 4 to get 13.
6y+13-2y=1
Subtract 2y from both sides.
4y+13=1
Combine 6y and -2y to get 4y.
4y=1-13
Subtract 13 from both sides.
4y=-12
Subtract 13 from 1 to get -12.
y=\frac{-12}{4}
Divide both sides by 4.
y=-3
Divide -12 by 4 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}