Evaluate
-y^{2}+12y-14
Expand
-y^{2}+12y-14
Graph
Share
Copied to clipboard
y^{2}-2^{2}-2\left(y-1\right)\left(y-5\right)
Consider \left(y+2\right)\left(y-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y^{2}-4-2\left(y-1\right)\left(y-5\right)
Calculate 2 to the power of 2 and get 4.
y^{2}-4+\left(-2y+2\right)\left(y-5\right)
Use the distributive property to multiply -2 by y-1.
y^{2}-4-2y^{2}+10y+2y-10
Apply the distributive property by multiplying each term of -2y+2 by each term of y-5.
y^{2}-4-2y^{2}+12y-10
Combine 10y and 2y to get 12y.
-y^{2}-4+12y-10
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-14+12y
Subtract 10 from -4 to get -14.
y^{2}-2^{2}-2\left(y-1\right)\left(y-5\right)
Consider \left(y+2\right)\left(y-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y^{2}-4-2\left(y-1\right)\left(y-5\right)
Calculate 2 to the power of 2 and get 4.
y^{2}-4+\left(-2y+2\right)\left(y-5\right)
Use the distributive property to multiply -2 by y-1.
y^{2}-4-2y^{2}+10y+2y-10
Apply the distributive property by multiplying each term of -2y+2 by each term of y-5.
y^{2}-4-2y^{2}+12y-10
Combine 10y and 2y to get 12y.
-y^{2}-4+12y-10
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-14+12y
Subtract 10 from -4 to get -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}