Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(xy\right)^{2}-16+16+x^{2}y^{2}
Consider \left(xy+4\right)\left(xy-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
x^{2}y^{2}-16+16+x^{2}y^{2}
Expand \left(xy\right)^{2}.
x^{2}y^{2}+x^{2}y^{2}
Add -16 and 16 to get 0.
2x^{2}y^{2}
Combine x^{2}y^{2} and x^{2}y^{2} to get 2x^{2}y^{2}.
\left(xy\right)^{2}-16+16+x^{2}y^{2}
Consider \left(xy+4\right)\left(xy-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
x^{2}y^{2}-16+16+x^{2}y^{2}
Expand \left(xy\right)^{2}.
x^{2}y^{2}+x^{2}y^{2}
Add -16 and 16 to get 0.
2x^{2}y^{2}
Combine x^{2}y^{2} and x^{2}y^{2} to get 2x^{2}y^{2}.