Solve for x_0
x_{0}=2\sqrt{58}+9\approx 24.231546212
x_{0}=9-2\sqrt{58}\approx -6.231546212
Share
Copied to clipboard
x_{0}^{2}+2x_{0}+1-4^{2}=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x_{0}+1\right)^{2}.
x_{0}^{2}+2x_{0}+1-16=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x_{0}^{2}+2x_{0}-15=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Subtract 16 from 1 to get -15.
x_{0}^{2}+2x_{0}-15=\left(\frac{0-x_{0}-11}{\sqrt{2}}\right)^{2}
Multiply 1 and 0 to get 0.
x_{0}^{2}+2x_{0}-15=\left(\frac{-11-x_{0}}{\sqrt{2}}\right)^{2}
Subtract 11 from 0 to get -11.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{-11-x_{0}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
x_{0}^{2}+2x_{0}-15=\frac{\left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\left(-11-x_{0}\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
x_{0}^{2}+2x_{0}-15=\frac{\left(-11-x_{0}\right)^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Expand \left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-11-x_{0}\right)^{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{2^{2}}
The square of \sqrt{2} is 2.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{4}
Calculate 2 to the power of 2 and get 4.
x_{0}^{2}+2x_{0}-15=\left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2}
Divide \left(121+22x_{0}+x_{0}^{2}\right)\times 2 by 4 to get \left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2}.
x_{0}^{2}+2x_{0}-15=\frac{121}{2}+11x_{0}+\frac{1}{2}x_{0}^{2}
Use the distributive property to multiply 121+22x_{0}+x_{0}^{2} by \frac{1}{2}.
x_{0}^{2}+2x_{0}-15-\frac{121}{2}=11x_{0}+\frac{1}{2}x_{0}^{2}
Subtract \frac{121}{2} from both sides.
x_{0}^{2}+2x_{0}-\frac{151}{2}=11x_{0}+\frac{1}{2}x_{0}^{2}
Subtract \frac{121}{2} from -15 to get -\frac{151}{2}.
x_{0}^{2}+2x_{0}-\frac{151}{2}-11x_{0}=\frac{1}{2}x_{0}^{2}
Subtract 11x_{0} from both sides.
x_{0}^{2}-9x_{0}-\frac{151}{2}=\frac{1}{2}x_{0}^{2}
Combine 2x_{0} and -11x_{0} to get -9x_{0}.
x_{0}^{2}-9x_{0}-\frac{151}{2}-\frac{1}{2}x_{0}^{2}=0
Subtract \frac{1}{2}x_{0}^{2} from both sides.
\frac{1}{2}x_{0}^{2}-9x_{0}-\frac{151}{2}=0
Combine x_{0}^{2} and -\frac{1}{2}x_{0}^{2} to get \frac{1}{2}x_{0}^{2}.
x_{0}=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times \frac{1}{2}\left(-\frac{151}{2}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -9 for b, and -\frac{151}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x_{0}=\frac{-\left(-9\right)±\sqrt{81-4\times \frac{1}{2}\left(-\frac{151}{2}\right)}}{2\times \frac{1}{2}}
Square -9.
x_{0}=\frac{-\left(-9\right)±\sqrt{81-2\left(-\frac{151}{2}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x_{0}=\frac{-\left(-9\right)±\sqrt{81+151}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{151}{2}.
x_{0}=\frac{-\left(-9\right)±\sqrt{232}}{2\times \frac{1}{2}}
Add 81 to 151.
x_{0}=\frac{-\left(-9\right)±2\sqrt{58}}{2\times \frac{1}{2}}
Take the square root of 232.
x_{0}=\frac{9±2\sqrt{58}}{2\times \frac{1}{2}}
The opposite of -9 is 9.
x_{0}=\frac{9±2\sqrt{58}}{1}
Multiply 2 times \frac{1}{2}.
x_{0}=\frac{2\sqrt{58}+9}{1}
Now solve the equation x_{0}=\frac{9±2\sqrt{58}}{1} when ± is plus. Add 9 to 2\sqrt{58}.
x_{0}=2\sqrt{58}+9
Divide 9+2\sqrt{58} by 1.
x_{0}=\frac{9-2\sqrt{58}}{1}
Now solve the equation x_{0}=\frac{9±2\sqrt{58}}{1} when ± is minus. Subtract 2\sqrt{58} from 9.
x_{0}=9-2\sqrt{58}
Divide 9-2\sqrt{58} by 1.
x_{0}=2\sqrt{58}+9 x_{0}=9-2\sqrt{58}
The equation is now solved.
x_{0}^{2}+2x_{0}+1-4^{2}=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x_{0}+1\right)^{2}.
x_{0}^{2}+2x_{0}+1-16=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x_{0}^{2}+2x_{0}-15=\left(\frac{1\times 0-x_{0}-11}{\sqrt{2}}\right)^{2}
Subtract 16 from 1 to get -15.
x_{0}^{2}+2x_{0}-15=\left(\frac{0-x_{0}-11}{\sqrt{2}}\right)^{2}
Multiply 1 and 0 to get 0.
x_{0}^{2}+2x_{0}-15=\left(\frac{-11-x_{0}}{\sqrt{2}}\right)^{2}
Subtract 11 from 0 to get -11.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{-11-x_{0}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
x_{0}^{2}+2x_{0}-15=\left(\frac{\left(-11-x_{0}\right)\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
x_{0}^{2}+2x_{0}-15=\frac{\left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\left(-11-x_{0}\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
x_{0}^{2}+2x_{0}-15=\frac{\left(-11-x_{0}\right)^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Expand \left(\left(-11-x_{0}\right)\sqrt{2}\right)^{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-11-x_{0}\right)^{2}.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{2^{2}}
The square of \sqrt{2} is 2.
x_{0}^{2}+2x_{0}-15=\frac{\left(121+22x_{0}+x_{0}^{2}\right)\times 2}{4}
Calculate 2 to the power of 2 and get 4.
x_{0}^{2}+2x_{0}-15=\left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2}
Divide \left(121+22x_{0}+x_{0}^{2}\right)\times 2 by 4 to get \left(121+22x_{0}+x_{0}^{2}\right)\times \frac{1}{2}.
x_{0}^{2}+2x_{0}-15=\frac{121}{2}+11x_{0}+\frac{1}{2}x_{0}^{2}
Use the distributive property to multiply 121+22x_{0}+x_{0}^{2} by \frac{1}{2}.
x_{0}^{2}+2x_{0}-15-11x_{0}=\frac{121}{2}+\frac{1}{2}x_{0}^{2}
Subtract 11x_{0} from both sides.
x_{0}^{2}-9x_{0}-15=\frac{121}{2}+\frac{1}{2}x_{0}^{2}
Combine 2x_{0} and -11x_{0} to get -9x_{0}.
x_{0}^{2}-9x_{0}-15-\frac{1}{2}x_{0}^{2}=\frac{121}{2}
Subtract \frac{1}{2}x_{0}^{2} from both sides.
\frac{1}{2}x_{0}^{2}-9x_{0}-15=\frac{121}{2}
Combine x_{0}^{2} and -\frac{1}{2}x_{0}^{2} to get \frac{1}{2}x_{0}^{2}.
\frac{1}{2}x_{0}^{2}-9x_{0}=\frac{121}{2}+15
Add 15 to both sides.
\frac{1}{2}x_{0}^{2}-9x_{0}=\frac{151}{2}
Add \frac{121}{2} and 15 to get \frac{151}{2}.
\frac{\frac{1}{2}x_{0}^{2}-9x_{0}}{\frac{1}{2}}=\frac{\frac{151}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x_{0}^{2}+\left(-\frac{9}{\frac{1}{2}}\right)x_{0}=\frac{\frac{151}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x_{0}^{2}-18x_{0}=\frac{\frac{151}{2}}{\frac{1}{2}}
Divide -9 by \frac{1}{2} by multiplying -9 by the reciprocal of \frac{1}{2}.
x_{0}^{2}-18x_{0}=151
Divide \frac{151}{2} by \frac{1}{2} by multiplying \frac{151}{2} by the reciprocal of \frac{1}{2}.
x_{0}^{2}-18x_{0}+\left(-9\right)^{2}=151+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x_{0}^{2}-18x_{0}+81=151+81
Square -9.
x_{0}^{2}-18x_{0}+81=232
Add 151 to 81.
\left(x_{0}-9\right)^{2}=232
Factor x_{0}^{2}-18x_{0}+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x_{0}-9\right)^{2}}=\sqrt{232}
Take the square root of both sides of the equation.
x_{0}-9=2\sqrt{58} x_{0}-9=-2\sqrt{58}
Simplify.
x_{0}=2\sqrt{58}+9 x_{0}=9-2\sqrt{58}
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}