Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x^{2}-y^{2}-\left(3x-y\right)\left(3x+y\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(\left(3x\right)^{2}-y^{2}\right)
Consider \left(3x-y\right)\left(3x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(3^{2}x^{2}-y^{2}\right)
Expand \left(3x\right)^{2}.
x^{2}-y^{2}-\left(9x^{2}-y^{2}\right)
Calculate 3 to the power of 2 and get 9.
x^{2}-y^{2}-9x^{2}-\left(-y^{2}\right)
To find the opposite of 9x^{2}-y^{2}, find the opposite of each term.
x^{2}-y^{2}-9x^{2}+y^{2}
The opposite of -y^{2} is y^{2}.
-8x^{2}-y^{2}+y^{2}
Combine x^{2} and -9x^{2} to get -8x^{2}.
-8x^{2}
Combine -y^{2} and y^{2} to get 0.
x^{2}-y^{2}-\left(3x-y\right)\left(3x+y\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(\left(3x\right)^{2}-y^{2}\right)
Consider \left(3x-y\right)\left(3x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(3^{2}x^{2}-y^{2}\right)
Expand \left(3x\right)^{2}.
x^{2}-y^{2}-\left(9x^{2}-y^{2}\right)
Calculate 3 to the power of 2 and get 9.
x^{2}-y^{2}-9x^{2}-\left(-y^{2}\right)
To find the opposite of 9x^{2}-y^{2}, find the opposite of each term.
x^{2}-y^{2}-9x^{2}+y^{2}
The opposite of -y^{2} is y^{2}.
-8x^{2}-y^{2}+y^{2}
Combine x^{2} and -9x^{2} to get -8x^{2}.
-8x^{2}
Combine -y^{2} and y^{2} to get 0.