Evaluate
-\frac{y}{3}-3x+\frac{13}{3}
Expand
-\frac{y}{3}-3x+\frac{13}{3}
Share
Copied to clipboard
x-y+3-\frac{2}{3}\times 6x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Use the distributive property to multiply -\frac{2}{3} by 6x-y-2.
x-y+3+\frac{-2\times 6}{3}x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Express -\frac{2}{3}\times 6 as a single fraction.
x-y+3+\frac{-12}{3}x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Multiply -2 and 6 to get -12.
x-y+3-4x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Divide -12 by 3 to get -4.
x-y+3-4x+\frac{2}{3}y-\frac{2}{3}\left(-2\right)
Multiply -\frac{2}{3} and -1 to get \frac{2}{3}.
x-y+3-4x+\frac{2}{3}y+\frac{-2\left(-2\right)}{3}
Express -\frac{2}{3}\left(-2\right) as a single fraction.
x-y+3-4x+\frac{2}{3}y+\frac{4}{3}
Multiply -2 and -2 to get 4.
-3x-y+3+\frac{2}{3}y+\frac{4}{3}
Combine x and -4x to get -3x.
-3x-\frac{1}{3}y+3+\frac{4}{3}
Combine -y and \frac{2}{3}y to get -\frac{1}{3}y.
-3x-\frac{1}{3}y+\frac{9}{3}+\frac{4}{3}
Convert 3 to fraction \frac{9}{3}.
-3x-\frac{1}{3}y+\frac{9+4}{3}
Since \frac{9}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
-3x-\frac{1}{3}y+\frac{13}{3}
Add 9 and 4 to get 13.
x-y+3-\frac{2}{3}\times 6x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Use the distributive property to multiply -\frac{2}{3} by 6x-y-2.
x-y+3+\frac{-2\times 6}{3}x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Express -\frac{2}{3}\times 6 as a single fraction.
x-y+3+\frac{-12}{3}x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Multiply -2 and 6 to get -12.
x-y+3-4x-\frac{2}{3}\left(-1\right)y-\frac{2}{3}\left(-2\right)
Divide -12 by 3 to get -4.
x-y+3-4x+\frac{2}{3}y-\frac{2}{3}\left(-2\right)
Multiply -\frac{2}{3} and -1 to get \frac{2}{3}.
x-y+3-4x+\frac{2}{3}y+\frac{-2\left(-2\right)}{3}
Express -\frac{2}{3}\left(-2\right) as a single fraction.
x-y+3-4x+\frac{2}{3}y+\frac{4}{3}
Multiply -2 and -2 to get 4.
-3x-y+3+\frac{2}{3}y+\frac{4}{3}
Combine x and -4x to get -3x.
-3x-\frac{1}{3}y+3+\frac{4}{3}
Combine -y and \frac{2}{3}y to get -\frac{1}{3}y.
-3x-\frac{1}{3}y+\frac{9}{3}+\frac{4}{3}
Convert 3 to fraction \frac{9}{3}.
-3x-\frac{1}{3}y+\frac{9+4}{3}
Since \frac{9}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
-3x-\frac{1}{3}y+\frac{13}{3}
Add 9 and 4 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}