Skip to main content
Solve for m
Tick mark Image
Solve for n
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-xn-px+np=\left(x-m\right)\left(x-q\right)
Use the distributive property to multiply x-p by x-n.
x^{2}-xn-px+np=x^{2}-xq-mx+mq
Use the distributive property to multiply x-m by x-q.
x^{2}-xq-mx+mq=x^{2}-xn-px+np
Swap sides so that all variable terms are on the left hand side.
-xq-mx+mq=x^{2}-xn-px+np-x^{2}
Subtract x^{2} from both sides.
-xq-mx+mq=-xn-px+np
Combine x^{2} and -x^{2} to get 0.
-mx+mq=-xn-px+np+xq
Add xq to both sides.
\left(-x+q\right)m=-xn-px+np+xq
Combine all terms containing m.
\left(q-x\right)m=qx-nx-px+np
The equation is in standard form.
\frac{\left(q-x\right)m}{q-x}=\frac{qx-nx-px+np}{q-x}
Divide both sides by -x+q.
m=\frac{qx-nx-px+np}{q-x}
Dividing by -x+q undoes the multiplication by -x+q.
x^{2}-xn-px+np=\left(x-m\right)\left(x-q\right)
Use the distributive property to multiply x-p by x-n.
x^{2}-xn-px+np=x^{2}-xq-mx+qm
Use the distributive property to multiply x-m by x-q.
-xn-px+np=x^{2}-xq-mx+qm-x^{2}
Subtract x^{2} from both sides.
-xn-px+np=-xq-mx+qm
Combine x^{2} and -x^{2} to get 0.
-xn+np=-xq-mx+qm+px
Add px to both sides.
\left(-x+p\right)n=-xq-mx+qm+px
Combine all terms containing n.
\left(p-x\right)n=px-mx-qx+mq
The equation is in standard form.
\frac{\left(p-x\right)n}{p-x}=\frac{px-mx-qx+mq}{p-x}
Divide both sides by p-x.
n=\frac{px-mx-qx+mq}{p-x}
Dividing by p-x undoes the multiplication by p-x.