Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-14x+48=-1
Use the distributive property to multiply x-8 by x-6 and combine like terms.
x^{2}-14x+48+1=0
Add 1 to both sides.
x^{2}-14x+49=0
Add 48 and 1 to get 49.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2}
Multiply -4 times 49.
x=\frac{-\left(-14\right)±\sqrt{0}}{2}
Add 196 to -196.
x=-\frac{-14}{2}
Take the square root of 0.
x=\frac{14}{2}
The opposite of -14 is 14.
x=7
Divide 14 by 2.
x^{2}-14x+48=-1
Use the distributive property to multiply x-8 by x-6 and combine like terms.
x^{2}-14x=-1-48
Subtract 48 from both sides.
x^{2}-14x=-49
Subtract 48 from -1 to get -49.
x^{2}-14x+\left(-7\right)^{2}=-49+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-49+49
Square -7.
x^{2}-14x+49=0
Add -49 to 49.
\left(x-7\right)^{2}=0
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-7=0 x-7=0
Simplify.
x=7 x=7
Add 7 to both sides of the equation.
x=7
The equation is now solved. Solutions are the same.