Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-16x+64=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
x^{2}-16x+64-x=0
Subtract x from both sides.
x^{2}-17x+64=0
Combine -16x and -x to get -17x.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 64}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -17 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 64}}{2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-256}}{2}
Multiply -4 times 64.
x=\frac{-\left(-17\right)±\sqrt{33}}{2}
Add 289 to -256.
x=\frac{17±\sqrt{33}}{2}
The opposite of -17 is 17.
x=\frac{\sqrt{33}+17}{2}
Now solve the equation x=\frac{17±\sqrt{33}}{2} when ± is plus. Add 17 to \sqrt{33}.
x=\frac{17-\sqrt{33}}{2}
Now solve the equation x=\frac{17±\sqrt{33}}{2} when ± is minus. Subtract \sqrt{33} from 17.
x=\frac{\sqrt{33}+17}{2} x=\frac{17-\sqrt{33}}{2}
The equation is now solved.
x^{2}-16x+64=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
x^{2}-16x+64-x=0
Subtract x from both sides.
x^{2}-17x+64=0
Combine -16x and -x to get -17x.
x^{2}-17x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-64+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-64+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{33}{4}
Add -64 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{33}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{\sqrt{33}}{2} x-\frac{17}{2}=-\frac{\sqrt{33}}{2}
Simplify.
x=\frac{\sqrt{33}+17}{2} x=\frac{17-\sqrt{33}}{2}
Add \frac{17}{2} to both sides of the equation.