Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x-21=24
Use the distributive property to multiply x-7 by x+3 and combine like terms.
x^{2}-4x-21-24=0
Subtract 24 from both sides.
x^{2}-4x-45=0
Subtract 24 from -21 to get -45.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-45\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-45\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+180}}{2}
Multiply -4 times -45.
x=\frac{-\left(-4\right)±\sqrt{196}}{2}
Add 16 to 180.
x=\frac{-\left(-4\right)±14}{2}
Take the square root of 196.
x=\frac{4±14}{2}
The opposite of -4 is 4.
x=\frac{18}{2}
Now solve the equation x=\frac{4±14}{2} when ± is plus. Add 4 to 14.
x=9
Divide 18 by 2.
x=-\frac{10}{2}
Now solve the equation x=\frac{4±14}{2} when ± is minus. Subtract 14 from 4.
x=-5
Divide -10 by 2.
x=9 x=-5
The equation is now solved.
x^{2}-4x-21=24
Use the distributive property to multiply x-7 by x+3 and combine like terms.
x^{2}-4x=24+21
Add 21 to both sides.
x^{2}-4x=45
Add 24 and 21 to get 45.
x^{2}-4x+\left(-2\right)^{2}=45+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=45+4
Square -2.
x^{2}-4x+4=49
Add 45 to 4.
\left(x-2\right)^{2}=49
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
x-2=7 x-2=-7
Simplify.
x=9 x=-5
Add 2 to both sides of the equation.