Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

150x-0.5x^{2}-7200=1600
Use the distributive property to multiply x-60 by 120-0.5x and combine like terms.
150x-0.5x^{2}-7200-1600=0
Subtract 1600 from both sides.
150x-0.5x^{2}-8800=0
Subtract 1600 from -7200 to get -8800.
-0.5x^{2}+150x-8800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-150±\sqrt{150^{2}-4\left(-0.5\right)\left(-8800\right)}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, 150 for b, and -8800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\left(-0.5\right)\left(-8800\right)}}{2\left(-0.5\right)}
Square 150.
x=\frac{-150±\sqrt{22500+2\left(-8800\right)}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
x=\frac{-150±\sqrt{22500-17600}}{2\left(-0.5\right)}
Multiply 2 times -8800.
x=\frac{-150±\sqrt{4900}}{2\left(-0.5\right)}
Add 22500 to -17600.
x=\frac{-150±70}{2\left(-0.5\right)}
Take the square root of 4900.
x=\frac{-150±70}{-1}
Multiply 2 times -0.5.
x=-\frac{80}{-1}
Now solve the equation x=\frac{-150±70}{-1} when ± is plus. Add -150 to 70.
x=80
Divide -80 by -1.
x=-\frac{220}{-1}
Now solve the equation x=\frac{-150±70}{-1} when ± is minus. Subtract 70 from -150.
x=220
Divide -220 by -1.
x=80 x=220
The equation is now solved.
150x-0.5x^{2}-7200=1600
Use the distributive property to multiply x-60 by 120-0.5x and combine like terms.
150x-0.5x^{2}=1600+7200
Add 7200 to both sides.
150x-0.5x^{2}=8800
Add 1600 and 7200 to get 8800.
-0.5x^{2}+150x=8800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5x^{2}+150x}{-0.5}=\frac{8800}{-0.5}
Multiply both sides by -2.
x^{2}+\frac{150}{-0.5}x=\frac{8800}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
x^{2}-300x=\frac{8800}{-0.5}
Divide 150 by -0.5 by multiplying 150 by the reciprocal of -0.5.
x^{2}-300x=-17600
Divide 8800 by -0.5 by multiplying 8800 by the reciprocal of -0.5.
x^{2}-300x+\left(-150\right)^{2}=-17600+\left(-150\right)^{2}
Divide -300, the coefficient of the x term, by 2 to get -150. Then add the square of -150 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-300x+22500=-17600+22500
Square -150.
x^{2}-300x+22500=4900
Add -17600 to 22500.
\left(x-150\right)^{2}=4900
Factor x^{2}-300x+22500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{4900}
Take the square root of both sides of the equation.
x-150=70 x-150=-70
Simplify.
x=220 x=80
Add 150 to both sides of the equation.