Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10x^{2}+340x-1680=720
Use the distributive property to multiply x-6 by -10x+280 and combine like terms.
-10x^{2}+340x-1680-720=0
Subtract 720 from both sides.
-10x^{2}+340x-2400=0
Subtract 720 from -1680 to get -2400.
x=\frac{-340±\sqrt{340^{2}-4\left(-10\right)\left(-2400\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 340 for b, and -2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-340±\sqrt{115600-4\left(-10\right)\left(-2400\right)}}{2\left(-10\right)}
Square 340.
x=\frac{-340±\sqrt{115600+40\left(-2400\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-340±\sqrt{115600-96000}}{2\left(-10\right)}
Multiply 40 times -2400.
x=\frac{-340±\sqrt{19600}}{2\left(-10\right)}
Add 115600 to -96000.
x=\frac{-340±140}{2\left(-10\right)}
Take the square root of 19600.
x=\frac{-340±140}{-20}
Multiply 2 times -10.
x=-\frac{200}{-20}
Now solve the equation x=\frac{-340±140}{-20} when ± is plus. Add -340 to 140.
x=10
Divide -200 by -20.
x=-\frac{480}{-20}
Now solve the equation x=\frac{-340±140}{-20} when ± is minus. Subtract 140 from -340.
x=24
Divide -480 by -20.
x=10 x=24
The equation is now solved.
-10x^{2}+340x-1680=720
Use the distributive property to multiply x-6 by -10x+280 and combine like terms.
-10x^{2}+340x=720+1680
Add 1680 to both sides.
-10x^{2}+340x=2400
Add 720 and 1680 to get 2400.
\frac{-10x^{2}+340x}{-10}=\frac{2400}{-10}
Divide both sides by -10.
x^{2}+\frac{340}{-10}x=\frac{2400}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-34x=\frac{2400}{-10}
Divide 340 by -10.
x^{2}-34x=-240
Divide 2400 by -10.
x^{2}-34x+\left(-17\right)^{2}=-240+\left(-17\right)^{2}
Divide -34, the coefficient of the x term, by 2 to get -17. Then add the square of -17 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-34x+289=-240+289
Square -17.
x^{2}-34x+289=49
Add -240 to 289.
\left(x-17\right)^{2}=49
Factor x^{2}-34x+289. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-17\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
x-17=7 x-17=-7
Simplify.
x=24 x=10
Add 17 to both sides of the equation.