Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-25=2\left(x-1\right)\left(x+1\right)
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25=\left(2x-2\right)\left(x+1\right)
Use the distributive property to multiply 2 by x-1.
x^{2}-25=2x^{2}-2
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
x^{2}-25-2x^{2}=-2
Subtract 2x^{2} from both sides.
-x^{2}-25=-2
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}=-2+25
Add 25 to both sides.
-x^{2}=23
Add -2 and 25 to get 23.
x^{2}=-23
Divide both sides by -1.
x=\sqrt{23}i x=-\sqrt{23}i
The equation is now solved.
x^{2}-25=2\left(x-1\right)\left(x+1\right)
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25=\left(2x-2\right)\left(x+1\right)
Use the distributive property to multiply 2 by x-1.
x^{2}-25=2x^{2}-2
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
x^{2}-25-2x^{2}=-2
Subtract 2x^{2} from both sides.
-x^{2}-25=-2
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-25+2=0
Add 2 to both sides.
-x^{2}-23=0
Add -25 and 2 to get -23.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-23\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-23\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-23\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-92}}{2\left(-1\right)}
Multiply 4 times -23.
x=\frac{0±2\sqrt{23}i}{2\left(-1\right)}
Take the square root of -92.
x=\frac{0±2\sqrt{23}i}{-2}
Multiply 2 times -1.
x=-\sqrt{23}i
Now solve the equation x=\frac{0±2\sqrt{23}i}{-2} when ± is plus.
x=\sqrt{23}i
Now solve the equation x=\frac{0±2\sqrt{23}i}{-2} when ± is minus.
x=-\sqrt{23}i x=\sqrt{23}i
The equation is now solved.