Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{3\left(4x+m\right)}{2\left(x+6\right)}\text{, }&x\neq -6\\k\in \mathrm{C}\text{, }&x=-6\text{ and }m=24\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{3\left(4x+m\right)}{2\left(x+6\right)}\text{, }&x\neq -6\\k\in \mathrm{R}\text{, }&x=-6\text{ and }m=24\end{matrix}\right.
Solve for m
m=\frac{2\left(kx-6x+6k\right)}{3}
Graph
Quiz
Linear Equation
5 problems similar to:
( x - 4 ) ( x - k ) = x ^ { 2 } - \frac { 5 } { 3 } k x + m
Share
Copied to clipboard
x^{2}-xk-4x+4k=x^{2}-\frac{5}{3}kx+m
Use the distributive property to multiply x-4 by x-k.
x^{2}-xk-4x+4k+\frac{5}{3}kx=x^{2}+m
Add \frac{5}{3}kx to both sides.
x^{2}+\frac{2}{3}xk-4x+4k=x^{2}+m
Combine -xk and \frac{5}{3}kx to get \frac{2}{3}xk.
\frac{2}{3}xk-4x+4k=x^{2}+m-x^{2}
Subtract x^{2} from both sides.
\frac{2}{3}xk-4x+4k=m
Combine x^{2} and -x^{2} to get 0.
\frac{2}{3}xk+4k=m+4x
Add 4x to both sides.
\left(\frac{2}{3}x+4\right)k=m+4x
Combine all terms containing k.
\left(\frac{2x}{3}+4\right)k=4x+m
The equation is in standard form.
\frac{\left(\frac{2x}{3}+4\right)k}{\frac{2x}{3}+4}=\frac{4x+m}{\frac{2x}{3}+4}
Divide both sides by \frac{2}{3}x+4.
k=\frac{4x+m}{\frac{2x}{3}+4}
Dividing by \frac{2}{3}x+4 undoes the multiplication by \frac{2}{3}x+4.
k=\frac{3\left(4x+m\right)}{2\left(x+6\right)}
Divide m+4x by \frac{2}{3}x+4.
x^{2}-xk-4x+4k=x^{2}-\frac{5}{3}kx+m
Use the distributive property to multiply x-4 by x-k.
x^{2}-xk-4x+4k+\frac{5}{3}kx=x^{2}+m
Add \frac{5}{3}kx to both sides.
x^{2}+\frac{2}{3}xk-4x+4k=x^{2}+m
Combine -xk and \frac{5}{3}kx to get \frac{2}{3}xk.
\frac{2}{3}xk-4x+4k=x^{2}+m-x^{2}
Subtract x^{2} from both sides.
\frac{2}{3}xk-4x+4k=m
Combine x^{2} and -x^{2} to get 0.
\frac{2}{3}xk+4k=m+4x
Add 4x to both sides.
\left(\frac{2}{3}x+4\right)k=m+4x
Combine all terms containing k.
\left(\frac{2x}{3}+4\right)k=4x+m
The equation is in standard form.
\frac{\left(\frac{2x}{3}+4\right)k}{\frac{2x}{3}+4}=\frac{4x+m}{\frac{2x}{3}+4}
Divide both sides by \frac{2}{3}x+4.
k=\frac{4x+m}{\frac{2x}{3}+4}
Dividing by \frac{2}{3}x+4 undoes the multiplication by \frac{2}{3}x+4.
k=\frac{3\left(4x+m\right)}{2\left(x+6\right)}
Divide m+4x by \frac{2}{3}x+4.
x^{2}-xk-4x+4k=x^{2}-\frac{5}{3}kx+m
Use the distributive property to multiply x-4 by x-k.
x^{2}-\frac{5}{3}kx+m=x^{2}-xk-4x+4k
Swap sides so that all variable terms are on the left hand side.
-\frac{5}{3}kx+m=x^{2}-xk-4x+4k-x^{2}
Subtract x^{2} from both sides.
-\frac{5}{3}kx+m=-xk-4x+4k
Combine x^{2} and -x^{2} to get 0.
m=-xk-4x+4k+\frac{5}{3}kx
Add \frac{5}{3}kx to both sides.
m=\frac{2}{3}xk-4x+4k
Combine -xk and \frac{5}{3}kx to get \frac{2}{3}xk.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}