Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x-20=-8
Use the distributive property to multiply x-4 by x+5 and combine like terms.
x^{2}+x-20+8=0
Add 8 to both sides.
x^{2}+x-12=0
Add -20 and 8 to get -12.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+48}}{2}
Multiply -4 times -12.
x=\frac{-1±\sqrt{49}}{2}
Add 1 to 48.
x=\frac{-1±7}{2}
Take the square root of 49.
x=\frac{6}{2}
Now solve the equation x=\frac{-1±7}{2} when ± is plus. Add -1 to 7.
x=3
Divide 6 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{-1±7}{2} when ± is minus. Subtract 7 from -1.
x=-4
Divide -8 by 2.
x=3 x=-4
The equation is now solved.
x^{2}+x-20=-8
Use the distributive property to multiply x-4 by x+5 and combine like terms.
x^{2}+x=-8+20
Add 20 to both sides.
x^{2}+x=12
Add -8 and 20 to get 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Add 12 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Simplify.
x=3 x=-4
Subtract \frac{1}{2} from both sides of the equation.