Solve for x
x = \frac{19}{4} = 4\frac{3}{4} = 4.75
x=0
Graph
Share
Copied to clipboard
4x^{2}-19x+12=12
Use the distributive property to multiply x-4 by 4x-3 and combine like terms.
4x^{2}-19x+12-12=0
Subtract 12 from both sides.
4x^{2}-19x=0
Subtract 12 from 12 to get 0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -19 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±19}{2\times 4}
Take the square root of \left(-19\right)^{2}.
x=\frac{19±19}{2\times 4}
The opposite of -19 is 19.
x=\frac{19±19}{8}
Multiply 2 times 4.
x=\frac{38}{8}
Now solve the equation x=\frac{19±19}{8} when ± is plus. Add 19 to 19.
x=\frac{19}{4}
Reduce the fraction \frac{38}{8} to lowest terms by extracting and canceling out 2.
x=\frac{0}{8}
Now solve the equation x=\frac{19±19}{8} when ± is minus. Subtract 19 from 19.
x=0
Divide 0 by 8.
x=\frac{19}{4} x=0
The equation is now solved.
4x^{2}-19x+12=12
Use the distributive property to multiply x-4 by 4x-3 and combine like terms.
4x^{2}-19x=12-12
Subtract 12 from both sides.
4x^{2}-19x=0
Subtract 12 from 12 to get 0.
\frac{4x^{2}-19x}{4}=\frac{0}{4}
Divide both sides by 4.
x^{2}-\frac{19}{4}x=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{19}{4}x=0
Divide 0 by 4.
x^{2}-\frac{19}{4}x+\left(-\frac{19}{8}\right)^{2}=\left(-\frac{19}{8}\right)^{2}
Divide -\frac{19}{4}, the coefficient of the x term, by 2 to get -\frac{19}{8}. Then add the square of -\frac{19}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{4}x+\frac{361}{64}=\frac{361}{64}
Square -\frac{19}{8} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{19}{8}\right)^{2}=\frac{361}{64}
Factor x^{2}-\frac{19}{4}x+\frac{361}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{8}\right)^{2}}=\sqrt{\frac{361}{64}}
Take the square root of both sides of the equation.
x-\frac{19}{8}=\frac{19}{8} x-\frac{19}{8}=-\frac{19}{8}
Simplify.
x=\frac{19}{4} x=0
Add \frac{19}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}