Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x+16+\left(x-6\right)^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+x^{2}-12x+36=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-8x+16-12x+36=100
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-20x+16+36=100
Combine -8x and -12x to get -20x.
2x^{2}-20x+52=100
Add 16 and 36 to get 52.
2x^{2}-20x+52-100=0
Subtract 100 from both sides.
2x^{2}-20x-48=0
Subtract 100 from 52 to get -48.
x^{2}-10x-24=0
Divide both sides by 2.
a+b=-10 ab=1\left(-24\right)=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-24. To find a and b, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
a=-12 b=2
The solution is the pair that gives sum -10.
\left(x^{2}-12x\right)+\left(2x-24\right)
Rewrite x^{2}-10x-24 as \left(x^{2}-12x\right)+\left(2x-24\right).
x\left(x-12\right)+2\left(x-12\right)
Factor out x in the first and 2 in the second group.
\left(x-12\right)\left(x+2\right)
Factor out common term x-12 by using distributive property.
x=12 x=-2
To find equation solutions, solve x-12=0 and x+2=0.
x^{2}-8x+16+\left(x-6\right)^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+x^{2}-12x+36=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-8x+16-12x+36=100
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-20x+16+36=100
Combine -8x and -12x to get -20x.
2x^{2}-20x+52=100
Add 16 and 36 to get 52.
2x^{2}-20x+52-100=0
Subtract 100 from both sides.
2x^{2}-20x-48=0
Subtract 100 from 52 to get -48.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 2\left(-48\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -20 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 2\left(-48\right)}}{2\times 2}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-8\left(-48\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-20\right)±\sqrt{400+384}}{2\times 2}
Multiply -8 times -48.
x=\frac{-\left(-20\right)±\sqrt{784}}{2\times 2}
Add 400 to 384.
x=\frac{-\left(-20\right)±28}{2\times 2}
Take the square root of 784.
x=\frac{20±28}{2\times 2}
The opposite of -20 is 20.
x=\frac{20±28}{4}
Multiply 2 times 2.
x=\frac{48}{4}
Now solve the equation x=\frac{20±28}{4} when ± is plus. Add 20 to 28.
x=12
Divide 48 by 4.
x=-\frac{8}{4}
Now solve the equation x=\frac{20±28}{4} when ± is minus. Subtract 28 from 20.
x=-2
Divide -8 by 4.
x=12 x=-2
The equation is now solved.
x^{2}-8x+16+\left(x-6\right)^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+x^{2}-12x+36=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-8x+16-12x+36=100
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-20x+16+36=100
Combine -8x and -12x to get -20x.
2x^{2}-20x+52=100
Add 16 and 36 to get 52.
2x^{2}-20x=100-52
Subtract 52 from both sides.
2x^{2}-20x=48
Subtract 52 from 100 to get 48.
\frac{2x^{2}-20x}{2}=\frac{48}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{20}{2}\right)x=\frac{48}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-10x=\frac{48}{2}
Divide -20 by 2.
x^{2}-10x=24
Divide 48 by 2.
x^{2}-10x+\left(-5\right)^{2}=24+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=24+25
Square -5.
x^{2}-10x+25=49
Add 24 to 25.
\left(x-5\right)^{2}=49
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
x-5=7 x-5=-7
Simplify.
x=12 x=-2
Add 5 to both sides of the equation.