Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=4
Graph
Share
Copied to clipboard
3xx+3x\left(-4\right)=4-x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
3x^{2}+3x\left(-4\right)=4-x
Multiply x and x to get x^{2}.
3x^{2}-12x=4-x
Multiply 3 and -4 to get -12.
3x^{2}-12x-4=-x
Subtract 4 from both sides.
3x^{2}-12x-4+x=0
Add x to both sides.
3x^{2}-11x-4=0
Combine -12x and x to get -11x.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -11 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\left(-4\right)}}{2\times 3}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-12\left(-4\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 3}
Multiply -12 times -4.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 3}
Add 121 to 48.
x=\frac{-\left(-11\right)±13}{2\times 3}
Take the square root of 169.
x=\frac{11±13}{2\times 3}
The opposite of -11 is 11.
x=\frac{11±13}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{11±13}{6} when ± is plus. Add 11 to 13.
x=4
Divide 24 by 6.
x=-\frac{2}{6}
Now solve the equation x=\frac{11±13}{6} when ± is minus. Subtract 13 from 11.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{1}{3}
The equation is now solved.
3xx+3x\left(-4\right)=4-x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
3x^{2}+3x\left(-4\right)=4-x
Multiply x and x to get x^{2}.
3x^{2}-12x=4-x
Multiply 3 and -4 to get -12.
3x^{2}-12x+x=4
Add x to both sides.
3x^{2}-11x=4
Combine -12x and x to get -11x.
\frac{3x^{2}-11x}{3}=\frac{4}{3}
Divide both sides by 3.
x^{2}-\frac{11}{3}x=\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{4}{3}+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{169}{36}
Add \frac{4}{3} to \frac{121}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{6}\right)^{2}=\frac{169}{36}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{13}{6} x-\frac{11}{6}=-\frac{13}{6}
Simplify.
x=4 x=-\frac{1}{3}
Add \frac{11}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}