Evaluate
\frac{\left(x-1\right)\left(2x+1\right)\left(x^{2}-9\right)}{2}
Expand
x^{4}-\frac{x^{3}}{2}-\frac{19x^{2}}{2}+\frac{9x}{2}+\frac{9}{2}
Graph
Share
Copied to clipboard
\left(x^{2}-x-3x+3\right)\left(x+\frac{1}{2}\right)\left(x+3\right)
Apply the distributive property by multiplying each term of x-3 by each term of x-1.
\left(x^{2}-4x+3\right)\left(x+\frac{1}{2}\right)\left(x+3\right)
Combine -x and -3x to get -4x.
\left(x^{3}+x^{2}\times \frac{1}{2}-4x^{2}-4x\times \frac{1}{2}+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Apply the distributive property by multiplying each term of x^{2}-4x+3 by each term of x+\frac{1}{2}.
\left(x^{3}-\frac{7}{2}x^{2}-4x\times \frac{1}{2}+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Combine x^{2}\times \frac{1}{2} and -4x^{2} to get -\frac{7}{2}x^{2}.
\left(x^{3}-\frac{7}{2}x^{2}+\frac{-4}{2}x+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Multiply -4 and \frac{1}{2} to get \frac{-4}{2}.
\left(x^{3}-\frac{7}{2}x^{2}-2x+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Divide -4 by 2 to get -2.
\left(x^{3}-\frac{7}{2}x^{2}+x+3\times \frac{1}{2}\right)\left(x+3\right)
Combine -2x and 3x to get x.
\left(x^{3}-\frac{7}{2}x^{2}+x+\frac{3}{2}\right)\left(x+3\right)
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
x^{4}+3x^{3}-\frac{7}{2}x^{2}x-\frac{7}{2}x^{2}\times 3+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Apply the distributive property by multiplying each term of x^{3}-\frac{7}{2}x^{2}+x+\frac{3}{2} by each term of x+3.
x^{4}+3x^{3}-\frac{7}{2}x^{3}-\frac{7}{2}x^{2}\times 3+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-\frac{1}{2}x^{3}-\frac{7}{2}x^{2}\times 3+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Combine 3x^{3} and -\frac{7}{2}x^{3} to get -\frac{1}{2}x^{3}.
x^{4}-\frac{1}{2}x^{3}+\frac{-7\times 3}{2}x^{2}+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Express -\frac{7}{2}\times 3 as a single fraction.
x^{4}-\frac{1}{2}x^{3}+\frac{-21}{2}x^{2}+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Multiply -7 and 3 to get -21.
x^{4}-\frac{1}{2}x^{3}-\frac{21}{2}x^{2}+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Fraction \frac{-21}{2} can be rewritten as -\frac{21}{2} by extracting the negative sign.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Combine -\frac{21}{2}x^{2} and x^{2} to get -\frac{19}{2}x^{2}.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+\frac{9}{2}x+\frac{3}{2}\times 3
Combine 3x and \frac{3}{2}x to get \frac{9}{2}x.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+\frac{9}{2}x+\frac{3\times 3}{2}
Express \frac{3}{2}\times 3 as a single fraction.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+\frac{9}{2}x+\frac{9}{2}
Multiply 3 and 3 to get 9.
\left(x^{2}-x-3x+3\right)\left(x+\frac{1}{2}\right)\left(x+3\right)
Apply the distributive property by multiplying each term of x-3 by each term of x-1.
\left(x^{2}-4x+3\right)\left(x+\frac{1}{2}\right)\left(x+3\right)
Combine -x and -3x to get -4x.
\left(x^{3}+x^{2}\times \frac{1}{2}-4x^{2}-4x\times \frac{1}{2}+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Apply the distributive property by multiplying each term of x^{2}-4x+3 by each term of x+\frac{1}{2}.
\left(x^{3}-\frac{7}{2}x^{2}-4x\times \frac{1}{2}+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Combine x^{2}\times \frac{1}{2} and -4x^{2} to get -\frac{7}{2}x^{2}.
\left(x^{3}-\frac{7}{2}x^{2}+\frac{-4}{2}x+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Multiply -4 and \frac{1}{2} to get \frac{-4}{2}.
\left(x^{3}-\frac{7}{2}x^{2}-2x+3x+3\times \frac{1}{2}\right)\left(x+3\right)
Divide -4 by 2 to get -2.
\left(x^{3}-\frac{7}{2}x^{2}+x+3\times \frac{1}{2}\right)\left(x+3\right)
Combine -2x and 3x to get x.
\left(x^{3}-\frac{7}{2}x^{2}+x+\frac{3}{2}\right)\left(x+3\right)
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
x^{4}+3x^{3}-\frac{7}{2}x^{2}x-\frac{7}{2}x^{2}\times 3+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Apply the distributive property by multiplying each term of x^{3}-\frac{7}{2}x^{2}+x+\frac{3}{2} by each term of x+3.
x^{4}+3x^{3}-\frac{7}{2}x^{3}-\frac{7}{2}x^{2}\times 3+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-\frac{1}{2}x^{3}-\frac{7}{2}x^{2}\times 3+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Combine 3x^{3} and -\frac{7}{2}x^{3} to get -\frac{1}{2}x^{3}.
x^{4}-\frac{1}{2}x^{3}+\frac{-7\times 3}{2}x^{2}+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Express -\frac{7}{2}\times 3 as a single fraction.
x^{4}-\frac{1}{2}x^{3}+\frac{-21}{2}x^{2}+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Multiply -7 and 3 to get -21.
x^{4}-\frac{1}{2}x^{3}-\frac{21}{2}x^{2}+x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Fraction \frac{-21}{2} can be rewritten as -\frac{21}{2} by extracting the negative sign.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+3x+\frac{3}{2}x+\frac{3}{2}\times 3
Combine -\frac{21}{2}x^{2} and x^{2} to get -\frac{19}{2}x^{2}.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+\frac{9}{2}x+\frac{3}{2}\times 3
Combine 3x and \frac{3}{2}x to get \frac{9}{2}x.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+\frac{9}{2}x+\frac{3\times 3}{2}
Express \frac{3}{2}\times 3 as a single fraction.
x^{4}-\frac{1}{2}x^{3}-\frac{19}{2}x^{2}+\frac{9}{2}x+\frac{9}{2}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}