Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x-12=17
Use the distributive property to multiply x-3 by x+4 and combine like terms.
x^{2}+x-12-17=0
Subtract 17 from both sides.
x^{2}+x-29=0
Subtract 17 from -12 to get -29.
x=\frac{-1±\sqrt{1^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-29\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+116}}{2}
Multiply -4 times -29.
x=\frac{-1±\sqrt{117}}{2}
Add 1 to 116.
x=\frac{-1±3\sqrt{13}}{2}
Take the square root of 117.
x=\frac{3\sqrt{13}-1}{2}
Now solve the equation x=\frac{-1±3\sqrt{13}}{2} when ± is plus. Add -1 to 3\sqrt{13}.
x=\frac{-3\sqrt{13}-1}{2}
Now solve the equation x=\frac{-1±3\sqrt{13}}{2} when ± is minus. Subtract 3\sqrt{13} from -1.
x=\frac{3\sqrt{13}-1}{2} x=\frac{-3\sqrt{13}-1}{2}
The equation is now solved.
x^{2}+x-12=17
Use the distributive property to multiply x-3 by x+4 and combine like terms.
x^{2}+x=17+12
Add 12 to both sides.
x^{2}+x=29
Add 17 and 12 to get 29.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=29+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=29+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{117}{4}
Add 29 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{117}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{117}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{3\sqrt{13}}{2} x+\frac{1}{2}=-\frac{3\sqrt{13}}{2}
Simplify.
x=\frac{3\sqrt{13}-1}{2} x=\frac{-3\sqrt{13}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.