Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+\left(x-1\right)^{3}=x\left(x+4\right)\left(4-x\right)+2x^{3}-9x-46
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=x\left(x+4\right)\left(4-x\right)+2x^{3}-9x-46
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=\left(x^{2}+4x\right)\left(4-x\right)+2x^{3}-9x-46
Use the distributive property to multiply x by x+4.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=-x^{3}+16x+2x^{3}-9x-46
Use the distributive property to multiply x^{2}+4x by 4-x and combine like terms.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=x^{3}+16x-9x-46
Combine -x^{3} and 2x^{3} to get x^{3}.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=x^{3}+7x-46
Combine 16x and -9x to get 7x.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1-x^{3}=7x-46
Subtract x^{3} from both sides.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}+3x-1=7x-46
Combine x^{3} and -x^{3} to get 0.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}+3x-1-7x=-46
Subtract 7x from both sides.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}-4x-1=-46
Combine 3x and -7x to get -4x.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}-4x-1+46=0
Add 46 to both sides.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}-4x+45=0
Add -1 and 46 to get 45.
x^{2}-6x+9+\left(-8+4x\right)\left(x+2\right)-3x^{2}-4x+45=0
Use the distributive property to multiply -4 by 2-x.
x^{2}-6x+9-16+4x^{2}-3x^{2}-4x+45=0
Use the distributive property to multiply -8+4x by x+2 and combine like terms.
x^{2}-6x-7+4x^{2}-3x^{2}-4x+45=0
Subtract 16 from 9 to get -7.
5x^{2}-6x-7-3x^{2}-4x+45=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
2x^{2}-6x-7-4x+45=0
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}-10x-7+45=0
Combine -6x and -4x to get -10x.
2x^{2}-10x+38=0
Add -7 and 45 to get 38.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 38}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and 38 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 38}}{2\times 2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 38}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-10\right)±\sqrt{100-304}}{2\times 2}
Multiply -8 times 38.
x=\frac{-\left(-10\right)±\sqrt{-204}}{2\times 2}
Add 100 to -304.
x=\frac{-\left(-10\right)±2\sqrt{51}i}{2\times 2}
Take the square root of -204.
x=\frac{10±2\sqrt{51}i}{2\times 2}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{51}i}{4}
Multiply 2 times 2.
x=\frac{10+2\sqrt{51}i}{4}
Now solve the equation x=\frac{10±2\sqrt{51}i}{4} when ± is plus. Add 10 to 2i\sqrt{51}.
x=\frac{5+\sqrt{51}i}{2}
Divide 10+2i\sqrt{51} by 4.
x=\frac{-2\sqrt{51}i+10}{4}
Now solve the equation x=\frac{10±2\sqrt{51}i}{4} when ± is minus. Subtract 2i\sqrt{51} from 10.
x=\frac{-\sqrt{51}i+5}{2}
Divide 10-2i\sqrt{51} by 4.
x=\frac{5+\sqrt{51}i}{2} x=\frac{-\sqrt{51}i+5}{2}
The equation is now solved.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+\left(x-1\right)^{3}=x\left(x+4\right)\left(4-x\right)+2x^{3}-9x-46
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=x\left(x+4\right)\left(4-x\right)+2x^{3}-9x-46
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=\left(x^{2}+4x\right)\left(4-x\right)+2x^{3}-9x-46
Use the distributive property to multiply x by x+4.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=-x^{3}+16x+2x^{3}-9x-46
Use the distributive property to multiply x^{2}+4x by 4-x and combine like terms.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=x^{3}+16x-9x-46
Combine -x^{3} and 2x^{3} to get x^{3}.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1=x^{3}+7x-46
Combine 16x and -9x to get 7x.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)+x^{3}-3x^{2}+3x-1-x^{3}=7x-46
Subtract x^{3} from both sides.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}+3x-1=7x-46
Combine x^{3} and -x^{3} to get 0.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}+3x-1-7x=-46
Subtract 7x from both sides.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}-4x-1=-46
Combine 3x and -7x to get -4x.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}-4x=-46+1
Add 1 to both sides.
x^{2}-6x+9-4\left(2-x\right)\left(x+2\right)-3x^{2}-4x=-45
Add -46 and 1 to get -45.
x^{2}-6x+9+\left(-8+4x\right)\left(x+2\right)-3x^{2}-4x=-45
Use the distributive property to multiply -4 by 2-x.
x^{2}-6x+9-16+4x^{2}-3x^{2}-4x=-45
Use the distributive property to multiply -8+4x by x+2 and combine like terms.
x^{2}-6x-7+4x^{2}-3x^{2}-4x=-45
Subtract 16 from 9 to get -7.
5x^{2}-6x-7-3x^{2}-4x=-45
Combine x^{2} and 4x^{2} to get 5x^{2}.
2x^{2}-6x-7-4x=-45
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}-10x-7=-45
Combine -6x and -4x to get -10x.
2x^{2}-10x=-45+7
Add 7 to both sides.
2x^{2}-10x=-38
Add -45 and 7 to get -38.
\frac{2x^{2}-10x}{2}=-\frac{38}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{38}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-5x=-\frac{38}{2}
Divide -10 by 2.
x^{2}-5x=-19
Divide -38 by 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-19+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-19+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{51}{4}
Add -19 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{51}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{51}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{51}i}{2} x-\frac{5}{2}=-\frac{\sqrt{51}i}{2}
Simplify.
x=\frac{5+\sqrt{51}i}{2} x=\frac{-\sqrt{51}i+5}{2}
Add \frac{5}{2} to both sides of the equation.