Solve for x
x=-2
x=5
Graph
Share
Copied to clipboard
x^{2}-6x+9-4=\left(5+x\right)\left(5-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+5=\left(5+x\right)\left(5-x\right)
Subtract 4 from 9 to get 5.
x^{2}-6x+5=25-x^{2}
Consider \left(5+x\right)\left(5-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-6x+5-25=-x^{2}
Subtract 25 from both sides.
x^{2}-6x-20=-x^{2}
Subtract 25 from 5 to get -20.
x^{2}-6x-20+x^{2}=0
Add x^{2} to both sides.
2x^{2}-6x-20=0
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}-3x-10=0
Divide both sides by 2.
a+b=-3 ab=1\left(-10\right)=-10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-5 b=2
The solution is the pair that gives sum -3.
\left(x^{2}-5x\right)+\left(2x-10\right)
Rewrite x^{2}-3x-10 as \left(x^{2}-5x\right)+\left(2x-10\right).
x\left(x-5\right)+2\left(x-5\right)
Factor out x in the first and 2 in the second group.
\left(x-5\right)\left(x+2\right)
Factor out common term x-5 by using distributive property.
x=5 x=-2
To find equation solutions, solve x-5=0 and x+2=0.
x^{2}-6x+9-4=\left(5+x\right)\left(5-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+5=\left(5+x\right)\left(5-x\right)
Subtract 4 from 9 to get 5.
x^{2}-6x+5=25-x^{2}
Consider \left(5+x\right)\left(5-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-6x+5-25=-x^{2}
Subtract 25 from both sides.
x^{2}-6x-20=-x^{2}
Subtract 25 from 5 to get -20.
x^{2}-6x-20+x^{2}=0
Add x^{2} to both sides.
2x^{2}-6x-20=0
Combine x^{2} and x^{2} to get 2x^{2}.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-20\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-20\right)}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-20\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2\times 2}
Multiply -8 times -20.
x=\frac{-\left(-6\right)±\sqrt{196}}{2\times 2}
Add 36 to 160.
x=\frac{-\left(-6\right)±14}{2\times 2}
Take the square root of 196.
x=\frac{6±14}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±14}{4}
Multiply 2 times 2.
x=\frac{20}{4}
Now solve the equation x=\frac{6±14}{4} when ± is plus. Add 6 to 14.
x=5
Divide 20 by 4.
x=-\frac{8}{4}
Now solve the equation x=\frac{6±14}{4} when ± is minus. Subtract 14 from 6.
x=-2
Divide -8 by 4.
x=5 x=-2
The equation is now solved.
x^{2}-6x+9-4=\left(5+x\right)\left(5-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+5=\left(5+x\right)\left(5-x\right)
Subtract 4 from 9 to get 5.
x^{2}-6x+5=25-x^{2}
Consider \left(5+x\right)\left(5-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-6x+5+x^{2}=25
Add x^{2} to both sides.
2x^{2}-6x+5=25
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x=25-5
Subtract 5 from both sides.
2x^{2}-6x=20
Subtract 5 from 25 to get 20.
\frac{2x^{2}-6x}{2}=\frac{20}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=\frac{20}{2}
Divide -6 by 2.
x^{2}-3x=10
Divide 20 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
Add 10 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Simplify.
x=5 x=-2
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}