Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x-3\right)^{2}-\left(x-1\right)=6x
Multiply both sides of the equation by 3.
3\left(x^{2}-6x+9\right)-\left(x-1\right)=6x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x^{2}-18x+27-\left(x-1\right)=6x
Use the distributive property to multiply 3 by x^{2}-6x+9.
3x^{2}-18x+27-x+1=6x
To find the opposite of x-1, find the opposite of each term.
3x^{2}-19x+27+1=6x
Combine -18x and -x to get -19x.
3x^{2}-19x+28=6x
Add 27 and 1 to get 28.
3x^{2}-19x+28-6x=0
Subtract 6x from both sides.
3x^{2}-25x+28=0
Combine -19x and -6x to get -25x.
a+b=-25 ab=3\times 28=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Calculate the sum for each pair.
a=-21 b=-4
The solution is the pair that gives sum -25.
\left(3x^{2}-21x\right)+\left(-4x+28\right)
Rewrite 3x^{2}-25x+28 as \left(3x^{2}-21x\right)+\left(-4x+28\right).
3x\left(x-7\right)-4\left(x-7\right)
Factor out 3x in the first and -4 in the second group.
\left(x-7\right)\left(3x-4\right)
Factor out common term x-7 by using distributive property.
x=7 x=\frac{4}{3}
To find equation solutions, solve x-7=0 and 3x-4=0.
3\left(x-3\right)^{2}-\left(x-1\right)=6x
Multiply both sides of the equation by 3.
3\left(x^{2}-6x+9\right)-\left(x-1\right)=6x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x^{2}-18x+27-\left(x-1\right)=6x
Use the distributive property to multiply 3 by x^{2}-6x+9.
3x^{2}-18x+27-x+1=6x
To find the opposite of x-1, find the opposite of each term.
3x^{2}-19x+27+1=6x
Combine -18x and -x to get -19x.
3x^{2}-19x+28=6x
Add 27 and 1 to get 28.
3x^{2}-19x+28-6x=0
Subtract 6x from both sides.
3x^{2}-25x+28=0
Combine -19x and -6x to get -25x.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 3\times 28}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -25 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 3\times 28}}{2\times 3}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-12\times 28}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-25\right)±\sqrt{625-336}}{2\times 3}
Multiply -12 times 28.
x=\frac{-\left(-25\right)±\sqrt{289}}{2\times 3}
Add 625 to -336.
x=\frac{-\left(-25\right)±17}{2\times 3}
Take the square root of 289.
x=\frac{25±17}{2\times 3}
The opposite of -25 is 25.
x=\frac{25±17}{6}
Multiply 2 times 3.
x=\frac{42}{6}
Now solve the equation x=\frac{25±17}{6} when ± is plus. Add 25 to 17.
x=7
Divide 42 by 6.
x=\frac{8}{6}
Now solve the equation x=\frac{25±17}{6} when ± is minus. Subtract 17 from 25.
x=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=7 x=\frac{4}{3}
The equation is now solved.
3\left(x-3\right)^{2}-\left(x-1\right)=6x
Multiply both sides of the equation by 3.
3\left(x^{2}-6x+9\right)-\left(x-1\right)=6x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x^{2}-18x+27-\left(x-1\right)=6x
Use the distributive property to multiply 3 by x^{2}-6x+9.
3x^{2}-18x+27-x+1=6x
To find the opposite of x-1, find the opposite of each term.
3x^{2}-19x+27+1=6x
Combine -18x and -x to get -19x.
3x^{2}-19x+28=6x
Add 27 and 1 to get 28.
3x^{2}-19x+28-6x=0
Subtract 6x from both sides.
3x^{2}-25x+28=0
Combine -19x and -6x to get -25x.
3x^{2}-25x=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-25x}{3}=-\frac{28}{3}
Divide both sides by 3.
x^{2}-\frac{25}{3}x=-\frac{28}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{25}{3}x+\left(-\frac{25}{6}\right)^{2}=-\frac{28}{3}+\left(-\frac{25}{6}\right)^{2}
Divide -\frac{25}{3}, the coefficient of the x term, by 2 to get -\frac{25}{6}. Then add the square of -\frac{25}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{3}x+\frac{625}{36}=-\frac{28}{3}+\frac{625}{36}
Square -\frac{25}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{3}x+\frac{625}{36}=\frac{289}{36}
Add -\frac{28}{3} to \frac{625}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{6}\right)^{2}=\frac{289}{36}
Factor x^{2}-\frac{25}{3}x+\frac{625}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
x-\frac{25}{6}=\frac{17}{6} x-\frac{25}{6}=-\frac{17}{6}
Simplify.
x=7 x=\frac{4}{3}
Add \frac{25}{6} to both sides of the equation.