Solve for x
x\leq 11
Graph
Share
Copied to clipboard
x^{2}-6x+9\geq \left(x-7\right)\left(x+5\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9\geq x^{2}-2x-35
Use the distributive property to multiply x-7 by x+5 and combine like terms.
x^{2}-6x+9-x^{2}\geq -2x-35
Subtract x^{2} from both sides.
-6x+9\geq -2x-35
Combine x^{2} and -x^{2} to get 0.
-6x+9+2x\geq -35
Add 2x to both sides.
-4x+9\geq -35
Combine -6x and 2x to get -4x.
-4x\geq -35-9
Subtract 9 from both sides.
-4x\geq -44
Subtract 9 from -35 to get -44.
x\leq \frac{-44}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x\leq 11
Divide -44 by -4 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}