Solve for a (complex solution)
\left\{\begin{matrix}\\a=x-b-6\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=x-a-6\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=x-b-6\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=x-a-6\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-6x+9=ax+bx+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
ax+bx+9=x^{2}-6x+9
Swap sides so that all variable terms are on the left hand side.
ax+9=x^{2}-6x+9-bx
Subtract bx from both sides.
ax=x^{2}-6x+9-bx-9
Subtract 9 from both sides.
ax=x^{2}-6x-bx
Subtract 9 from 9 to get 0.
xa=x^{2}-bx-6x
The equation is in standard form.
\frac{xa}{x}=\frac{x\left(x-b-6\right)}{x}
Divide both sides by x.
a=\frac{x\left(x-b-6\right)}{x}
Dividing by x undoes the multiplication by x.
a=x-b-6
Divide x\left(-6+x-b\right) by x.
x^{2}-6x+9=ax+bx+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
ax+bx+9=x^{2}-6x+9
Swap sides so that all variable terms are on the left hand side.
bx+9=x^{2}-6x+9-ax
Subtract ax from both sides.
bx=x^{2}-6x+9-ax-9
Subtract 9 from both sides.
bx=x^{2}-6x-ax
Subtract 9 from 9 to get 0.
xb=x^{2}-ax-6x
The equation is in standard form.
\frac{xb}{x}=\frac{x\left(x-a-6\right)}{x}
Divide both sides by x.
b=\frac{x\left(x-a-6\right)}{x}
Dividing by x undoes the multiplication by x.
b=x-a-6
Divide x\left(-6+x-a\right) by x.
x^{2}-6x+9=ax+bx+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
ax+bx+9=x^{2}-6x+9
Swap sides so that all variable terms are on the left hand side.
ax+9=x^{2}-6x+9-bx
Subtract bx from both sides.
ax=x^{2}-6x+9-bx-9
Subtract 9 from both sides.
ax=x^{2}-6x-bx
Subtract 9 from 9 to get 0.
xa=x^{2}-bx-6x
The equation is in standard form.
\frac{xa}{x}=\frac{x\left(x-b-6\right)}{x}
Divide both sides by x.
a=\frac{x\left(x-b-6\right)}{x}
Dividing by x undoes the multiplication by x.
a=x-b-6
Divide x\left(-6+x-b\right) by x.
x^{2}-6x+9=ax+bx+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
ax+bx+9=x^{2}-6x+9
Swap sides so that all variable terms are on the left hand side.
bx+9=x^{2}-6x+9-ax
Subtract ax from both sides.
bx=x^{2}-6x+9-ax-9
Subtract 9 from both sides.
bx=x^{2}-6x-ax
Subtract 9 from 9 to get 0.
xb=x^{2}-ax-6x
The equation is in standard form.
\frac{xb}{x}=\frac{x\left(x-a-6\right)}{x}
Divide both sides by x.
b=\frac{x\left(x-a-6\right)}{x}
Dividing by x undoes the multiplication by x.
b=x-a-6
Divide x\left(-6+x-a\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}