Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9=\frac{1}{4}\left(4x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=\frac{1}{4}\left(16x^{2}-8x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-1\right)^{2}.
x^{2}-6x+9=4x^{2}-2x+\frac{1}{4}
Use the distributive property to multiply \frac{1}{4} by 16x^{2}-8x+1.
x^{2}-6x+9-4x^{2}=-2x+\frac{1}{4}
Subtract 4x^{2} from both sides.
-3x^{2}-6x+9=-2x+\frac{1}{4}
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+9+2x=\frac{1}{4}
Add 2x to both sides.
-3x^{2}-4x+9=\frac{1}{4}
Combine -6x and 2x to get -4x.
-3x^{2}-4x+9-\frac{1}{4}=0
Subtract \frac{1}{4} from both sides.
-3x^{2}-4x+\frac{35}{4}=0
Subtract \frac{1}{4} from 9 to get \frac{35}{4}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times \frac{35}{4}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -4 for b, and \frac{35}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times \frac{35}{4}}}{2\left(-3\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\times \frac{35}{4}}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-4\right)±\sqrt{16+105}}{2\left(-3\right)}
Multiply 12 times \frac{35}{4}.
x=\frac{-\left(-4\right)±\sqrt{121}}{2\left(-3\right)}
Add 16 to 105.
x=\frac{-\left(-4\right)±11}{2\left(-3\right)}
Take the square root of 121.
x=\frac{4±11}{2\left(-3\right)}
The opposite of -4 is 4.
x=\frac{4±11}{-6}
Multiply 2 times -3.
x=\frac{15}{-6}
Now solve the equation x=\frac{4±11}{-6} when ± is plus. Add 4 to 11.
x=-\frac{5}{2}
Reduce the fraction \frac{15}{-6} to lowest terms by extracting and canceling out 3.
x=-\frac{7}{-6}
Now solve the equation x=\frac{4±11}{-6} when ± is minus. Subtract 11 from 4.
x=\frac{7}{6}
Divide -7 by -6.
x=-\frac{5}{2} x=\frac{7}{6}
The equation is now solved.
x^{2}-6x+9=\frac{1}{4}\left(4x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=\frac{1}{4}\left(16x^{2}-8x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-1\right)^{2}.
x^{2}-6x+9=4x^{2}-2x+\frac{1}{4}
Use the distributive property to multiply \frac{1}{4} by 16x^{2}-8x+1.
x^{2}-6x+9-4x^{2}=-2x+\frac{1}{4}
Subtract 4x^{2} from both sides.
-3x^{2}-6x+9=-2x+\frac{1}{4}
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+9+2x=\frac{1}{4}
Add 2x to both sides.
-3x^{2}-4x+9=\frac{1}{4}
Combine -6x and 2x to get -4x.
-3x^{2}-4x=\frac{1}{4}-9
Subtract 9 from both sides.
-3x^{2}-4x=-\frac{35}{4}
Subtract 9 from \frac{1}{4} to get -\frac{35}{4}.
\frac{-3x^{2}-4x}{-3}=-\frac{\frac{35}{4}}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{4}{-3}\right)x=-\frac{\frac{35}{4}}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{4}{3}x=-\frac{\frac{35}{4}}{-3}
Divide -4 by -3.
x^{2}+\frac{4}{3}x=\frac{35}{12}
Divide -\frac{35}{4} by -3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{35}{12}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{35}{12}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{121}{36}
Add \frac{35}{12} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{121}{36}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{121}{36}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{11}{6} x+\frac{2}{3}=-\frac{11}{6}
Simplify.
x=\frac{7}{6} x=-\frac{5}{2}
Subtract \frac{2}{3} from both sides of the equation.