Solve for x
x=-6
x=10
Graph
Share
Copied to clipboard
x^{2}-6x+9+\left(\frac{x}{4}+\frac{7}{2}\right)^{2}=85
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+\left(\frac{x}{4}+\frac{7\times 2}{4}\right)^{2}=85
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{7}{2} times \frac{2}{2}.
x^{2}-6x+9+\left(\frac{x+7\times 2}{4}\right)^{2}=85
Since \frac{x}{4} and \frac{7\times 2}{4} have the same denominator, add them by adding their numerators.
x^{2}-6x+9+\left(\frac{x+14}{4}\right)^{2}=85
Do the multiplications in x+7\times 2.
x^{2}-6x+9+\frac{\left(x+14\right)^{2}}{4^{2}}=85
To raise \frac{x+14}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-6x+9\right)\times 4^{2}}{4^{2}}+\frac{\left(x+14\right)^{2}}{4^{2}}=85
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-6x+9 times \frac{4^{2}}{4^{2}}.
\frac{\left(x^{2}-6x+9\right)\times 4^{2}+\left(x+14\right)^{2}}{4^{2}}=85
Since \frac{\left(x^{2}-6x+9\right)\times 4^{2}}{4^{2}} and \frac{\left(x+14\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{16x^{2}-96x+144+x^{2}+28x+196}{4^{2}}=85
Do the multiplications in \left(x^{2}-6x+9\right)\times 4^{2}+\left(x+14\right)^{2}.
\frac{17x^{2}-68x+340}{4^{2}}=85
Combine like terms in 16x^{2}-96x+144+x^{2}+28x+196.
\frac{17x^{2}-68x+340}{16}=85
Calculate 4 to the power of 2 and get 16.
\frac{17}{16}x^{2}-\frac{17}{4}x+\frac{85}{4}=85
Divide each term of 17x^{2}-68x+340 by 16 to get \frac{17}{16}x^{2}-\frac{17}{4}x+\frac{85}{4}.
\frac{17}{16}x^{2}-\frac{17}{4}x+\frac{85}{4}-85=0
Subtract 85 from both sides.
\frac{17}{16}x^{2}-\frac{17}{4}x-\frac{255}{4}=0
Subtract 85 from \frac{85}{4} to get -\frac{255}{4}.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\left(-\frac{17}{4}\right)^{2}-4\times \frac{17}{16}\left(-\frac{255}{4}\right)}}{2\times \frac{17}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{17}{16} for a, -\frac{17}{4} for b, and -\frac{255}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{289}{16}-4\times \frac{17}{16}\left(-\frac{255}{4}\right)}}{2\times \frac{17}{16}}
Square -\frac{17}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{289}{16}-\frac{17}{4}\left(-\frac{255}{4}\right)}}{2\times \frac{17}{16}}
Multiply -4 times \frac{17}{16}.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{289+4335}{16}}}{2\times \frac{17}{16}}
Multiply -\frac{17}{4} times -\frac{255}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{289}}{2\times \frac{17}{16}}
Add \frac{289}{16} to \frac{4335}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{17}{4}\right)±17}{2\times \frac{17}{16}}
Take the square root of 289.
x=\frac{\frac{17}{4}±17}{2\times \frac{17}{16}}
The opposite of -\frac{17}{4} is \frac{17}{4}.
x=\frac{\frac{17}{4}±17}{\frac{17}{8}}
Multiply 2 times \frac{17}{16}.
x=\frac{\frac{85}{4}}{\frac{17}{8}}
Now solve the equation x=\frac{\frac{17}{4}±17}{\frac{17}{8}} when ± is plus. Add \frac{17}{4} to 17.
x=10
Divide \frac{85}{4} by \frac{17}{8} by multiplying \frac{85}{4} by the reciprocal of \frac{17}{8}.
x=-\frac{\frac{51}{4}}{\frac{17}{8}}
Now solve the equation x=\frac{\frac{17}{4}±17}{\frac{17}{8}} when ± is minus. Subtract 17 from \frac{17}{4}.
x=-6
Divide -\frac{51}{4} by \frac{17}{8} by multiplying -\frac{51}{4} by the reciprocal of \frac{17}{8}.
x=10 x=-6
The equation is now solved.
x^{2}-6x+9+\left(\frac{x}{4}+\frac{7}{2}\right)^{2}=85
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+\left(\frac{x}{4}+\frac{7\times 2}{4}\right)^{2}=85
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{7}{2} times \frac{2}{2}.
x^{2}-6x+9+\left(\frac{x+7\times 2}{4}\right)^{2}=85
Since \frac{x}{4} and \frac{7\times 2}{4} have the same denominator, add them by adding their numerators.
x^{2}-6x+9+\left(\frac{x+14}{4}\right)^{2}=85
Do the multiplications in x+7\times 2.
x^{2}-6x+9+\frac{\left(x+14\right)^{2}}{4^{2}}=85
To raise \frac{x+14}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-6x+9\right)\times 4^{2}}{4^{2}}+\frac{\left(x+14\right)^{2}}{4^{2}}=85
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-6x+9 times \frac{4^{2}}{4^{2}}.
\frac{\left(x^{2}-6x+9\right)\times 4^{2}+\left(x+14\right)^{2}}{4^{2}}=85
Since \frac{\left(x^{2}-6x+9\right)\times 4^{2}}{4^{2}} and \frac{\left(x+14\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{16x^{2}-96x+144+x^{2}+28x+196}{4^{2}}=85
Do the multiplications in \left(x^{2}-6x+9\right)\times 4^{2}+\left(x+14\right)^{2}.
\frac{17x^{2}-68x+340}{4^{2}}=85
Combine like terms in 16x^{2}-96x+144+x^{2}+28x+196.
\frac{17x^{2}-68x+340}{16}=85
Calculate 4 to the power of 2 and get 16.
\frac{17}{16}x^{2}-\frac{17}{4}x+\frac{85}{4}=85
Divide each term of 17x^{2}-68x+340 by 16 to get \frac{17}{16}x^{2}-\frac{17}{4}x+\frac{85}{4}.
\frac{17}{16}x^{2}-\frac{17}{4}x=85-\frac{85}{4}
Subtract \frac{85}{4} from both sides.
\frac{17}{16}x^{2}-\frac{17}{4}x=\frac{255}{4}
Subtract \frac{85}{4} from 85 to get \frac{255}{4}.
\frac{\frac{17}{16}x^{2}-\frac{17}{4}x}{\frac{17}{16}}=\frac{\frac{255}{4}}{\frac{17}{16}}
Divide both sides of the equation by \frac{17}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{17}{4}}{\frac{17}{16}}\right)x=\frac{\frac{255}{4}}{\frac{17}{16}}
Dividing by \frac{17}{16} undoes the multiplication by \frac{17}{16}.
x^{2}-4x=\frac{\frac{255}{4}}{\frac{17}{16}}
Divide -\frac{17}{4} by \frac{17}{16} by multiplying -\frac{17}{4} by the reciprocal of \frac{17}{16}.
x^{2}-4x=60
Divide \frac{255}{4} by \frac{17}{16} by multiplying \frac{255}{4} by the reciprocal of \frac{17}{16}.
x^{2}-4x+\left(-2\right)^{2}=60+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=60+4
Square -2.
x^{2}-4x+4=64
Add 60 to 4.
\left(x-2\right)^{2}=64
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x-2=8 x-2=-8
Simplify.
x=10 x=-6
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}