( x - 20 ) \times 1080 \times 1.5 \% = 81
Solve for x
x=25
Graph
Share
Copied to clipboard
\left(x-20\right)\times 1080\times \frac{15}{1000}=81
Expand \frac{1.5}{100} by multiplying both numerator and the denominator by 10.
\left(x-20\right)\times 1080\times \frac{3}{200}=81
Reduce the fraction \frac{15}{1000} to lowest terms by extracting and canceling out 5.
\left(x-20\right)\times \frac{1080\times 3}{200}=81
Express 1080\times \frac{3}{200} as a single fraction.
\left(x-20\right)\times \frac{3240}{200}=81
Multiply 1080 and 3 to get 3240.
\left(x-20\right)\times \frac{81}{5}=81
Reduce the fraction \frac{3240}{200} to lowest terms by extracting and canceling out 40.
x\times \frac{81}{5}-20\times \frac{81}{5}=81
Use the distributive property to multiply x-20 by \frac{81}{5}.
x\times \frac{81}{5}+\frac{-20\times 81}{5}=81
Express -20\times \frac{81}{5} as a single fraction.
x\times \frac{81}{5}+\frac{-1620}{5}=81
Multiply -20 and 81 to get -1620.
x\times \frac{81}{5}-324=81
Divide -1620 by 5 to get -324.
x\times \frac{81}{5}=81+324
Add 324 to both sides.
x\times \frac{81}{5}=405
Add 81 and 324 to get 405.
x=405\times \frac{5}{81}
Multiply both sides by \frac{5}{81}, the reciprocal of \frac{81}{5}.
x=\frac{405\times 5}{81}
Express 405\times \frac{5}{81} as a single fraction.
x=\frac{2025}{81}
Multiply 405 and 5 to get 2025.
x=25
Divide 2025 by 81 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}