Solve for x
x = \frac{3 \sqrt{445} + 105}{2} \approx 84.142534665
x = \frac{105 - 3 \sqrt{445}}{2} \approx 20.857465335
Graph
Share
Copied to clipboard
\left(x-20\right)\left(600-10x+250\right)=550
Use the distributive property to multiply -10 by x-25.
\left(x-20\right)\left(850-10x\right)=550
Add 600 and 250 to get 850.
850x-10x^{2}-17000+200x=550
Apply the distributive property by multiplying each term of x-20 by each term of 850-10x.
1050x-10x^{2}-17000=550
Combine 850x and 200x to get 1050x.
1050x-10x^{2}-17000-550=0
Subtract 550 from both sides.
1050x-10x^{2}-17550=0
Subtract 550 from -17000 to get -17550.
-10x^{2}+1050x-17550=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1050±\sqrt{1050^{2}-4\left(-10\right)\left(-17550\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1050 for b, and -17550 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1050±\sqrt{1102500-4\left(-10\right)\left(-17550\right)}}{2\left(-10\right)}
Square 1050.
x=\frac{-1050±\sqrt{1102500+40\left(-17550\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1050±\sqrt{1102500-702000}}{2\left(-10\right)}
Multiply 40 times -17550.
x=\frac{-1050±\sqrt{400500}}{2\left(-10\right)}
Add 1102500 to -702000.
x=\frac{-1050±30\sqrt{445}}{2\left(-10\right)}
Take the square root of 400500.
x=\frac{-1050±30\sqrt{445}}{-20}
Multiply 2 times -10.
x=\frac{30\sqrt{445}-1050}{-20}
Now solve the equation x=\frac{-1050±30\sqrt{445}}{-20} when ± is plus. Add -1050 to 30\sqrt{445}.
x=\frac{105-3\sqrt{445}}{2}
Divide -1050+30\sqrt{445} by -20.
x=\frac{-30\sqrt{445}-1050}{-20}
Now solve the equation x=\frac{-1050±30\sqrt{445}}{-20} when ± is minus. Subtract 30\sqrt{445} from -1050.
x=\frac{3\sqrt{445}+105}{2}
Divide -1050-30\sqrt{445} by -20.
x=\frac{105-3\sqrt{445}}{2} x=\frac{3\sqrt{445}+105}{2}
The equation is now solved.
\left(x-20\right)\left(600-10x+250\right)=550
Use the distributive property to multiply -10 by x-25.
\left(x-20\right)\left(850-10x\right)=550
Add 600 and 250 to get 850.
850x-10x^{2}-17000+200x=550
Apply the distributive property by multiplying each term of x-20 by each term of 850-10x.
1050x-10x^{2}-17000=550
Combine 850x and 200x to get 1050x.
1050x-10x^{2}=550+17000
Add 17000 to both sides.
1050x-10x^{2}=17550
Add 550 and 17000 to get 17550.
-10x^{2}+1050x=17550
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+1050x}{-10}=\frac{17550}{-10}
Divide both sides by -10.
x^{2}+\frac{1050}{-10}x=\frac{17550}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-105x=\frac{17550}{-10}
Divide 1050 by -10.
x^{2}-105x=-1755
Divide 17550 by -10.
x^{2}-105x+\left(-\frac{105}{2}\right)^{2}=-1755+\left(-\frac{105}{2}\right)^{2}
Divide -105, the coefficient of the x term, by 2 to get -\frac{105}{2}. Then add the square of -\frac{105}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-105x+\frac{11025}{4}=-1755+\frac{11025}{4}
Square -\frac{105}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-105x+\frac{11025}{4}=\frac{4005}{4}
Add -1755 to \frac{11025}{4}.
\left(x-\frac{105}{2}\right)^{2}=\frac{4005}{4}
Factor x^{2}-105x+\frac{11025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{105}{2}\right)^{2}}=\sqrt{\frac{4005}{4}}
Take the square root of both sides of the equation.
x-\frac{105}{2}=\frac{3\sqrt{445}}{2} x-\frac{105}{2}=-\frac{3\sqrt{445}}{2}
Simplify.
x=\frac{3\sqrt{445}+105}{2} x=\frac{105-3\sqrt{445}}{2}
Add \frac{105}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}