( x - 2 y ) d y = 2 y d x
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-2y\text{ or }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-2y\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=-2y\text{ or }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-2y\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(xd-2yd\right)y=2ydx
Use the distributive property to multiply x-2y by d.
xdy-2dy^{2}=2ydx
Use the distributive property to multiply xd-2yd by y.
xdy-2dy^{2}-2ydx=0
Subtract 2ydx from both sides.
-xdy-2dy^{2}=0
Combine xdy and -2ydx to get -xdy.
\left(-xy-2y^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -xy-2y^{2}.
\left(xd-2yd\right)y=2ydx
Use the distributive property to multiply x-2y by d.
xdy-2dy^{2}=2ydx
Use the distributive property to multiply xd-2yd by y.
xdy-2dy^{2}-2ydx=0
Subtract 2ydx from both sides.
-xdy-2dy^{2}=0
Combine xdy and -2ydx to get -xdy.
-xdy=2dy^{2}
Add 2dy^{2} to both sides. Anything plus zero gives itself.
\left(-dy\right)x=2dy^{2}
The equation is in standard form.
\frac{\left(-dy\right)x}{-dy}=\frac{2dy^{2}}{-dy}
Divide both sides by -dy.
x=\frac{2dy^{2}}{-dy}
Dividing by -dy undoes the multiplication by -dy.
x=-2y
Divide 2dy^{2} by -dy.
\left(xd-2yd\right)y=2ydx
Use the distributive property to multiply x-2y by d.
xdy-2dy^{2}=2ydx
Use the distributive property to multiply xd-2yd by y.
xdy-2dy^{2}-2ydx=0
Subtract 2ydx from both sides.
-xdy-2dy^{2}=0
Combine xdy and -2ydx to get -xdy.
\left(-xy-2y^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -xy-2y^{2}.
\left(xd-2yd\right)y=2ydx
Use the distributive property to multiply x-2y by d.
xdy-2dy^{2}=2ydx
Use the distributive property to multiply xd-2yd by y.
xdy-2dy^{2}-2ydx=0
Subtract 2ydx from both sides.
-xdy-2dy^{2}=0
Combine xdy and -2ydx to get -xdy.
-xdy=2dy^{2}
Add 2dy^{2} to both sides. Anything plus zero gives itself.
\left(-dy\right)x=2dy^{2}
The equation is in standard form.
\frac{\left(-dy\right)x}{-dy}=\frac{2dy^{2}}{-dy}
Divide both sides by -dy.
x=\frac{2dy^{2}}{-dy}
Dividing by -dy undoes the multiplication by -dy.
x=-2y
Divide 2dy^{2} by -dy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}