Evaluate
24xy^{2}
Expand
24xy^{2}
Quiz
Algebra
( x - 2 y ) ^ { 3 } - x ( x - 2 y ) ( x + 2 y ) + 2 x y ( 3 x + 4 y ) - ( - 2 y ) ^ { 3 }
Share
Copied to clipboard
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x\left(x-2y\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2y\right)^{3}.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{2}-2xy\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Use the distributive property to multiply x by x-2y.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{3}-4xy^{2}\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Use the distributive property to multiply x^{2}-2xy by x+2y and combine like terms.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
To find the opposite of x^{3}-4xy^{2}, find the opposite of each term.
-6x^{2}y+12xy^{2}-8y^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Combine x^{3} and -x^{3} to get 0.
-6x^{2}y+16xy^{2}-8y^{3}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Combine 12xy^{2} and 4xy^{2} to get 16xy^{2}.
-6x^{2}y+16xy^{2}-8y^{3}+6x^{2}y+8xy^{2}-\left(-2y\right)^{3}
Use the distributive property to multiply 2xy by 3x+4y.
16xy^{2}-8y^{3}+8xy^{2}-\left(-2y\right)^{3}
Combine -6x^{2}y and 6x^{2}y to get 0.
24xy^{2}-8y^{3}-\left(-2y\right)^{3}
Combine 16xy^{2} and 8xy^{2} to get 24xy^{2}.
24xy^{2}-8y^{3}-\left(-2\right)^{3}y^{3}
Expand \left(-2y\right)^{3}.
24xy^{2}-8y^{3}-\left(-8y^{3}\right)
Calculate -2 to the power of 3 and get -8.
24xy^{2}-8y^{3}+8y^{3}
The opposite of -8y^{3} is 8y^{3}.
24xy^{2}
Combine -8y^{3} and 8y^{3} to get 0.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x\left(x-2y\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2y\right)^{3}.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{2}-2xy\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Use the distributive property to multiply x by x-2y.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{3}-4xy^{2}\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Use the distributive property to multiply x^{2}-2xy by x+2y and combine like terms.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
To find the opposite of x^{3}-4xy^{2}, find the opposite of each term.
-6x^{2}y+12xy^{2}-8y^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Combine x^{3} and -x^{3} to get 0.
-6x^{2}y+16xy^{2}-8y^{3}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
Combine 12xy^{2} and 4xy^{2} to get 16xy^{2}.
-6x^{2}y+16xy^{2}-8y^{3}+6x^{2}y+8xy^{2}-\left(-2y\right)^{3}
Use the distributive property to multiply 2xy by 3x+4y.
16xy^{2}-8y^{3}+8xy^{2}-\left(-2y\right)^{3}
Combine -6x^{2}y and 6x^{2}y to get 0.
24xy^{2}-8y^{3}-\left(-2y\right)^{3}
Combine 16xy^{2} and 8xy^{2} to get 24xy^{2}.
24xy^{2}-8y^{3}-\left(-2\right)^{3}y^{3}
Expand \left(-2y\right)^{3}.
24xy^{2}-8y^{3}-\left(-8y^{3}\right)
Calculate -2 to the power of 3 and get -8.
24xy^{2}-8y^{3}+8y^{3}
The opposite of -8y^{3} is 8y^{3}.
24xy^{2}
Combine -8y^{3} and 8y^{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}