Solve for x
x=-\frac{2}{3}\approx -0.666666667
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
x^{3}-8-x^{2}\left(x-18\right)=0
Use the distributive property to multiply x-2 by x^{2}+2x+4 and combine like terms.
x^{3}-8-\left(x^{3}-18x^{2}\right)=0
Use the distributive property to multiply x^{2} by x-18.
x^{3}-8-x^{3}+18x^{2}=0
To find the opposite of x^{3}-18x^{2}, find the opposite of each term.
-8+18x^{2}=0
Combine x^{3} and -x^{3} to get 0.
-4+9x^{2}=0
Divide both sides by 2.
\left(3x-2\right)\left(3x+2\right)=0
Consider -4+9x^{2}. Rewrite -4+9x^{2} as \left(3x\right)^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{3} x=-\frac{2}{3}
To find equation solutions, solve 3x-2=0 and 3x+2=0.
x^{3}-8-x^{2}\left(x-18\right)=0
Use the distributive property to multiply x-2 by x^{2}+2x+4 and combine like terms.
x^{3}-8-\left(x^{3}-18x^{2}\right)=0
Use the distributive property to multiply x^{2} by x-18.
x^{3}-8-x^{3}+18x^{2}=0
To find the opposite of x^{3}-18x^{2}, find the opposite of each term.
-8+18x^{2}=0
Combine x^{3} and -x^{3} to get 0.
18x^{2}=8
Add 8 to both sides. Anything plus zero gives itself.
x^{2}=\frac{8}{18}
Divide both sides by 18.
x^{2}=\frac{4}{9}
Reduce the fraction \frac{8}{18} to lowest terms by extracting and canceling out 2.
x=\frac{2}{3} x=-\frac{2}{3}
Take the square root of both sides of the equation.
x^{3}-8-x^{2}\left(x-18\right)=0
Use the distributive property to multiply x-2 by x^{2}+2x+4 and combine like terms.
x^{3}-8-\left(x^{3}-18x^{2}\right)=0
Use the distributive property to multiply x^{2} by x-18.
x^{3}-8-x^{3}+18x^{2}=0
To find the opposite of x^{3}-18x^{2}, find the opposite of each term.
-8+18x^{2}=0
Combine x^{3} and -x^{3} to get 0.
18x^{2}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 18\left(-8\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 18\left(-8\right)}}{2\times 18}
Square 0.
x=\frac{0±\sqrt{-72\left(-8\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{0±\sqrt{576}}{2\times 18}
Multiply -72 times -8.
x=\frac{0±24}{2\times 18}
Take the square root of 576.
x=\frac{0±24}{36}
Multiply 2 times 18.
x=\frac{2}{3}
Now solve the equation x=\frac{0±24}{36} when ± is plus. Reduce the fraction \frac{24}{36} to lowest terms by extracting and canceling out 12.
x=-\frac{2}{3}
Now solve the equation x=\frac{0±24}{36} when ± is minus. Reduce the fraction \frac{-24}{36} to lowest terms by extracting and canceling out 12.
x=\frac{2}{3} x=-\frac{2}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}