Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+x-6\right)\left(x-4\right)=\left(x+2\right)\left(x-3\right)\left(x+4\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
x^{3}-3x^{2}-10x+24=\left(x+2\right)\left(x-3\right)\left(x+4\right)
Use the distributive property to multiply x^{2}+x-6 by x-4 and combine like terms.
x^{3}-3x^{2}-10x+24=\left(x^{2}-x-6\right)\left(x+4\right)
Use the distributive property to multiply x+2 by x-3 and combine like terms.
x^{3}-3x^{2}-10x+24=x^{3}+3x^{2}-10x-24
Use the distributive property to multiply x^{2}-x-6 by x+4 and combine like terms.
x^{3}-3x^{2}-10x+24-x^{3}=3x^{2}-10x-24
Subtract x^{3} from both sides.
-3x^{2}-10x+24=3x^{2}-10x-24
Combine x^{3} and -x^{3} to get 0.
-3x^{2}-10x+24-3x^{2}=-10x-24
Subtract 3x^{2} from both sides.
-6x^{2}-10x+24=-10x-24
Combine -3x^{2} and -3x^{2} to get -6x^{2}.
-6x^{2}-10x+24+10x=-24
Add 10x to both sides.
-6x^{2}+24=-24
Combine -10x and 10x to get 0.
-6x^{2}=-24-24
Subtract 24 from both sides.
-6x^{2}=-48
Subtract 24 from -24 to get -48.
x^{2}=\frac{-48}{-6}
Divide both sides by -6.
x^{2}=8
Divide -48 by -6 to get 8.
x=2\sqrt{2} x=-2\sqrt{2}
Take the square root of both sides of the equation.
\left(x^{2}+x-6\right)\left(x-4\right)=\left(x+2\right)\left(x-3\right)\left(x+4\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
x^{3}-3x^{2}-10x+24=\left(x+2\right)\left(x-3\right)\left(x+4\right)
Use the distributive property to multiply x^{2}+x-6 by x-4 and combine like terms.
x^{3}-3x^{2}-10x+24=\left(x^{2}-x-6\right)\left(x+4\right)
Use the distributive property to multiply x+2 by x-3 and combine like terms.
x^{3}-3x^{2}-10x+24=x^{3}+3x^{2}-10x-24
Use the distributive property to multiply x^{2}-x-6 by x+4 and combine like terms.
x^{3}-3x^{2}-10x+24-x^{3}=3x^{2}-10x-24
Subtract x^{3} from both sides.
-3x^{2}-10x+24=3x^{2}-10x-24
Combine x^{3} and -x^{3} to get 0.
-3x^{2}-10x+24-3x^{2}=-10x-24
Subtract 3x^{2} from both sides.
-6x^{2}-10x+24=-10x-24
Combine -3x^{2} and -3x^{2} to get -6x^{2}.
-6x^{2}-10x+24+10x=-24
Add 10x to both sides.
-6x^{2}+24=-24
Combine -10x and 10x to get 0.
-6x^{2}+24+24=0
Add 24 to both sides.
-6x^{2}+48=0
Add 24 and 24 to get 48.
x=\frac{0±\sqrt{0^{2}-4\left(-6\right)\times 48}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 0 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-6\right)\times 48}}{2\left(-6\right)}
Square 0.
x=\frac{0±\sqrt{24\times 48}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{0±\sqrt{1152}}{2\left(-6\right)}
Multiply 24 times 48.
x=\frac{0±24\sqrt{2}}{2\left(-6\right)}
Take the square root of 1152.
x=\frac{0±24\sqrt{2}}{-12}
Multiply 2 times -6.
x=-2\sqrt{2}
Now solve the equation x=\frac{0±24\sqrt{2}}{-12} when ± is plus.
x=2\sqrt{2}
Now solve the equation x=\frac{0±24\sqrt{2}}{-12} when ± is minus.
x=-2\sqrt{2} x=2\sqrt{2}
The equation is now solved.