Solve for b
b=x^{4}-x^{2}-16
Solve for x (complex solution)
x=-\frac{\sqrt{-2\sqrt{4b+65}+2}}{2}
x=\frac{\sqrt{-2\sqrt{4b+65}+2}}{2}
x=\frac{\sqrt{2\sqrt{4b+65}+2}}{2}
x=-\frac{\sqrt{2\sqrt{4b+65}+2}}{2}
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{-2\sqrt{4b+65}+2}}{2}\text{; }x=-\frac{\sqrt{-2\sqrt{4b+65}+2}}{2}\text{, }&b\geq -\frac{65}{4}\text{ and }b\leq -16\\x=\frac{\sqrt{2\sqrt{4b+65}+2}}{2}\text{; }x=-\frac{\sqrt{2\sqrt{4b+65}+2}}{2}\text{, }&b\geq -\frac{65}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x^{2}-4\right)\left(x^{2}+4\right)=x^{2}+b
Use the distributive property to multiply x-2 by x+2 and combine like terms.
\left(x^{2}\right)^{2}-16=x^{2}+b
Consider \left(x^{2}-4\right)\left(x^{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
x^{4}-16=x^{2}+b
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+b=x^{4}-16
Swap sides so that all variable terms are on the left hand side.
b=x^{4}-16-x^{2}
Subtract x^{2} from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}