Solve for x
x=\frac{2y+9}{y+1}
y\neq -1
Solve for y
y=-\frac{x-9}{x-2}
x\neq 2
Graph
Share
Copied to clipboard
xy+x-2y-2=7
Use the distributive property to multiply x-2 by y+1.
xy+x-2=7+2y
Add 2y to both sides.
xy+x=7+2y+2
Add 2 to both sides.
xy+x=9+2y
Add 7 and 2 to get 9.
\left(y+1\right)x=9+2y
Combine all terms containing x.
\left(y+1\right)x=2y+9
The equation is in standard form.
\frac{\left(y+1\right)x}{y+1}=\frac{2y+9}{y+1}
Divide both sides by y+1.
x=\frac{2y+9}{y+1}
Dividing by y+1 undoes the multiplication by y+1.
xy+x-2y-2=7
Use the distributive property to multiply x-2 by y+1.
xy-2y-2=7-x
Subtract x from both sides.
xy-2y=7-x+2
Add 2 to both sides.
xy-2y=9-x
Add 7 and 2 to get 9.
\left(x-2\right)y=9-x
Combine all terms containing y.
\frac{\left(x-2\right)y}{x-2}=\frac{9-x}{x-2}
Divide both sides by x-2.
y=\frac{9-x}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}