Solve for x
x=-11
x=2
Graph
Share
Copied to clipboard
x^{2}-4x+4-5x=2\left(x+3\right)\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-9x+4=2\left(x+3\right)\left(x-3\right)
Combine -4x and -5x to get -9x.
x^{2}-9x+4=\left(2x+6\right)\left(x-3\right)
Use the distributive property to multiply 2 by x+3.
x^{2}-9x+4=2x^{2}-18
Use the distributive property to multiply 2x+6 by x-3 and combine like terms.
x^{2}-9x+4-2x^{2}=-18
Subtract 2x^{2} from both sides.
-x^{2}-9x+4=-18
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-9x+4+18=0
Add 18 to both sides.
-x^{2}-9x+22=0
Add 4 and 18 to get 22.
a+b=-9 ab=-22=-22
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+22. To find a and b, set up a system to be solved.
1,-22 2,-11
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -22.
1-22=-21 2-11=-9
Calculate the sum for each pair.
a=2 b=-11
The solution is the pair that gives sum -9.
\left(-x^{2}+2x\right)+\left(-11x+22\right)
Rewrite -x^{2}-9x+22 as \left(-x^{2}+2x\right)+\left(-11x+22\right).
x\left(-x+2\right)+11\left(-x+2\right)
Factor out x in the first and 11 in the second group.
\left(-x+2\right)\left(x+11\right)
Factor out common term -x+2 by using distributive property.
x=2 x=-11
To find equation solutions, solve -x+2=0 and x+11=0.
x^{2}-4x+4-5x=2\left(x+3\right)\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-9x+4=2\left(x+3\right)\left(x-3\right)
Combine -4x and -5x to get -9x.
x^{2}-9x+4=\left(2x+6\right)\left(x-3\right)
Use the distributive property to multiply 2 by x+3.
x^{2}-9x+4=2x^{2}-18
Use the distributive property to multiply 2x+6 by x-3 and combine like terms.
x^{2}-9x+4-2x^{2}=-18
Subtract 2x^{2} from both sides.
-x^{2}-9x+4=-18
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-9x+4+18=0
Add 18 to both sides.
-x^{2}-9x+22=0
Add 4 and 18 to get 22.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\times 22}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -9 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\times 22}}{2\left(-1\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4\times 22}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{81+88}}{2\left(-1\right)}
Multiply 4 times 22.
x=\frac{-\left(-9\right)±\sqrt{169}}{2\left(-1\right)}
Add 81 to 88.
x=\frac{-\left(-9\right)±13}{2\left(-1\right)}
Take the square root of 169.
x=\frac{9±13}{2\left(-1\right)}
The opposite of -9 is 9.
x=\frac{9±13}{-2}
Multiply 2 times -1.
x=\frac{22}{-2}
Now solve the equation x=\frac{9±13}{-2} when ± is plus. Add 9 to 13.
x=-11
Divide 22 by -2.
x=-\frac{4}{-2}
Now solve the equation x=\frac{9±13}{-2} when ± is minus. Subtract 13 from 9.
x=2
Divide -4 by -2.
x=-11 x=2
The equation is now solved.
x^{2}-4x+4-5x=2\left(x+3\right)\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-9x+4=2\left(x+3\right)\left(x-3\right)
Combine -4x and -5x to get -9x.
x^{2}-9x+4=\left(2x+6\right)\left(x-3\right)
Use the distributive property to multiply 2 by x+3.
x^{2}-9x+4=2x^{2}-18
Use the distributive property to multiply 2x+6 by x-3 and combine like terms.
x^{2}-9x+4-2x^{2}=-18
Subtract 2x^{2} from both sides.
-x^{2}-9x+4=-18
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-9x=-18-4
Subtract 4 from both sides.
-x^{2}-9x=-22
Subtract 4 from -18 to get -22.
\frac{-x^{2}-9x}{-1}=-\frac{22}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{9}{-1}\right)x=-\frac{22}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+9x=-\frac{22}{-1}
Divide -9 by -1.
x^{2}+9x=22
Divide -22 by -1.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=22+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=22+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{169}{4}
Add 22 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{13}{2} x+\frac{9}{2}=-\frac{13}{2}
Simplify.
x=2 x=-11
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}