Solve for x
x=-4
x=0
Graph
Share
Copied to clipboard
x^{2}-4x+4-4\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-4\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-4x+4-4x^{2}-8x-4=0
Use the distributive property to multiply -4 by x^{2}+2x+1.
-3x^{2}-4x+4-8x-4=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-12x+4-4=0
Combine -4x and -8x to get -12x.
-3x^{2}-12x=0
Subtract 4 from 4 to get 0.
x\left(-3x-12\right)=0
Factor out x.
x=0 x=-4
To find equation solutions, solve x=0 and -3x-12=0.
x^{2}-4x+4-4\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-4\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-4x+4-4x^{2}-8x-4=0
Use the distributive property to multiply -4 by x^{2}+2x+1.
-3x^{2}-4x+4-8x-4=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-12x+4-4=0
Combine -4x and -8x to get -12x.
-3x^{2}-12x=0
Subtract 4 from 4 to get 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±12}{2\left(-3\right)}
Take the square root of \left(-12\right)^{2}.
x=\frac{12±12}{2\left(-3\right)}
The opposite of -12 is 12.
x=\frac{12±12}{-6}
Multiply 2 times -3.
x=\frac{24}{-6}
Now solve the equation x=\frac{12±12}{-6} when ± is plus. Add 12 to 12.
x=-4
Divide 24 by -6.
x=\frac{0}{-6}
Now solve the equation x=\frac{12±12}{-6} when ± is minus. Subtract 12 from 12.
x=0
Divide 0 by -6.
x=-4 x=0
The equation is now solved.
x^{2}-4x+4-4\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-4\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-4x+4-4x^{2}-8x-4=0
Use the distributive property to multiply -4 by x^{2}+2x+1.
-3x^{2}-4x+4-8x-4=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-12x+4-4=0
Combine -4x and -8x to get -12x.
-3x^{2}-12x=0
Subtract 4 from 4 to get 0.
\frac{-3x^{2}-12x}{-3}=\frac{0}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{12}{-3}\right)x=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+4x=\frac{0}{-3}
Divide -12 by -3.
x^{2}+4x=0
Divide 0 by -3.
x^{2}+4x+2^{2}=2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=4
Square 2.
\left(x+2\right)^{2}=4
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+2=2 x+2=-2
Simplify.
x=0 x=-4
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}