Solve for x
x=-1
x=8
Graph
Share
Copied to clipboard
x^{2}-4x+4=3x+12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-3x=12
Subtract 3x from both sides.
x^{2}-7x+4=12
Combine -4x and -3x to get -7x.
x^{2}-7x+4-12=0
Subtract 12 from both sides.
x^{2}-7x-8=0
Subtract 12 from 4 to get -8.
a+b=-7 ab=-8
To solve the equation, factor x^{2}-7x-8 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-8 2,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8.
1-8=-7 2-4=-2
Calculate the sum for each pair.
a=-8 b=1
The solution is the pair that gives sum -7.
\left(x-8\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=8 x=-1
To find equation solutions, solve x-8=0 and x+1=0.
x^{2}-4x+4=3x+12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-3x=12
Subtract 3x from both sides.
x^{2}-7x+4=12
Combine -4x and -3x to get -7x.
x^{2}-7x+4-12=0
Subtract 12 from both sides.
x^{2}-7x-8=0
Subtract 12 from 4 to get -8.
a+b=-7 ab=1\left(-8\right)=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,-8 2,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8.
1-8=-7 2-4=-2
Calculate the sum for each pair.
a=-8 b=1
The solution is the pair that gives sum -7.
\left(x^{2}-8x\right)+\left(x-8\right)
Rewrite x^{2}-7x-8 as \left(x^{2}-8x\right)+\left(x-8\right).
x\left(x-8\right)+x-8
Factor out x in x^{2}-8x.
\left(x-8\right)\left(x+1\right)
Factor out common term x-8 by using distributive property.
x=8 x=-1
To find equation solutions, solve x-8=0 and x+1=0.
x^{2}-4x+4=3x+12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-3x=12
Subtract 3x from both sides.
x^{2}-7x+4=12
Combine -4x and -3x to get -7x.
x^{2}-7x+4-12=0
Subtract 12 from both sides.
x^{2}-7x-8=0
Subtract 12 from 4 to get -8.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-8\right)}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2}
Multiply -4 times -8.
x=\frac{-\left(-7\right)±\sqrt{81}}{2}
Add 49 to 32.
x=\frac{-\left(-7\right)±9}{2}
Take the square root of 81.
x=\frac{7±9}{2}
The opposite of -7 is 7.
x=\frac{16}{2}
Now solve the equation x=\frac{7±9}{2} when ± is plus. Add 7 to 9.
x=8
Divide 16 by 2.
x=-\frac{2}{2}
Now solve the equation x=\frac{7±9}{2} when ± is minus. Subtract 9 from 7.
x=-1
Divide -2 by 2.
x=8 x=-1
The equation is now solved.
x^{2}-4x+4=3x+12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-3x=12
Subtract 3x from both sides.
x^{2}-7x+4=12
Combine -4x and -3x to get -7x.
x^{2}-7x=12-4
Subtract 4 from both sides.
x^{2}-7x=8
Subtract 4 from 12 to get 8.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=8+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=8+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{81}{4}
Add 8 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{9}{2} x-\frac{7}{2}=-\frac{9}{2}
Simplify.
x=8 x=-1
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}