Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+4=1+x-8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=-7+x
Subtract 8 from 1 to get -7.
x^{2}-4x+4-\left(-7\right)=x
Subtract -7 from both sides.
x^{2}-4x+4+7=x
The opposite of -7 is 7.
x^{2}-4x+4+7-x=0
Subtract x from both sides.
x^{2}-4x+11-x=0
Add 4 and 7 to get 11.
x^{2}-5x+11=0
Combine -4x and -x to get -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 11}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 11}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-44}}{2}
Multiply -4 times 11.
x=\frac{-\left(-5\right)±\sqrt{-19}}{2}
Add 25 to -44.
x=\frac{-\left(-5\right)±\sqrt{19}i}{2}
Take the square root of -19.
x=\frac{5±\sqrt{19}i}{2}
The opposite of -5 is 5.
x=\frac{5+\sqrt{19}i}{2}
Now solve the equation x=\frac{5±\sqrt{19}i}{2} when ± is plus. Add 5 to i\sqrt{19}.
x=\frac{-\sqrt{19}i+5}{2}
Now solve the equation x=\frac{5±\sqrt{19}i}{2} when ± is minus. Subtract i\sqrt{19} from 5.
x=\frac{5+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+5}{2}
The equation is now solved.
x^{2}-4x+4=1+x-8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=-7+x
Subtract 8 from 1 to get -7.
x^{2}-4x+4-x=-7
Subtract x from both sides.
x^{2}-5x+4=-7
Combine -4x and -x to get -5x.
x^{2}-5x=-7-4
Subtract 4 from both sides.
x^{2}-5x=-11
Subtract 4 from -7 to get -11.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-11+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-11+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{19}{4}
Add -11 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{19}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{19}i}{2} x-\frac{5}{2}=-\frac{\sqrt{19}i}{2}
Simplify.
x=\frac{5+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+5}{2}
Add \frac{5}{2} to both sides of the equation.