Solve for x
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
x^{2}-4x+4+2x\left(1-x\right)+3=\left(x+2\right)\left(3-x\right)+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+2x-2x^{2}+3=\left(x+2\right)\left(3-x\right)+3
Use the distributive property to multiply 2x by 1-x.
x^{2}-2x+4-2x^{2}+3=\left(x+2\right)\left(3-x\right)+3
Combine -4x and 2x to get -2x.
-x^{2}-2x+4+3=\left(x+2\right)\left(3-x\right)+3
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-2x+7=\left(x+2\right)\left(3-x\right)+3
Add 4 and 3 to get 7.
-x^{2}-2x+7=x-x^{2}+6+3
Use the distributive property to multiply x+2 by 3-x and combine like terms.
-x^{2}-2x+7=x-x^{2}+9
Add 6 and 3 to get 9.
-x^{2}-2x+7-x=-x^{2}+9
Subtract x from both sides.
-x^{2}-3x+7=-x^{2}+9
Combine -2x and -x to get -3x.
-x^{2}-3x+7+x^{2}=9
Add x^{2} to both sides.
-3x+7=9
Combine -x^{2} and x^{2} to get 0.
-3x=9-7
Subtract 7 from both sides.
-3x=2
Subtract 7 from 9 to get 2.
x=\frac{2}{-3}
Divide both sides by -3.
x=-\frac{2}{3}
Fraction \frac{2}{-3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}