Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+4+\left(\frac{3}{2}x-3\right)^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+\frac{9}{4}x^{2}-9x+9=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}x-3\right)^{2}.
\frac{13}{4}x^{2}-4x+4-9x+9=1
Combine x^{2} and \frac{9}{4}x^{2} to get \frac{13}{4}x^{2}.
\frac{13}{4}x^{2}-13x+4+9=1
Combine -4x and -9x to get -13x.
\frac{13}{4}x^{2}-13x+13=1
Add 4 and 9 to get 13.
\frac{13}{4}x^{2}-13x+13-1=0
Subtract 1 from both sides.
\frac{13}{4}x^{2}-13x+12=0
Subtract 1 from 13 to get 12.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times \frac{13}{4}\times 12}}{2\times \frac{13}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{4} for a, -13 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times \frac{13}{4}\times 12}}{2\times \frac{13}{4}}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-13\times 12}}{2\times \frac{13}{4}}
Multiply -4 times \frac{13}{4}.
x=\frac{-\left(-13\right)±\sqrt{169-156}}{2\times \frac{13}{4}}
Multiply -13 times 12.
x=\frac{-\left(-13\right)±\sqrt{13}}{2\times \frac{13}{4}}
Add 169 to -156.
x=\frac{13±\sqrt{13}}{2\times \frac{13}{4}}
The opposite of -13 is 13.
x=\frac{13±\sqrt{13}}{\frac{13}{2}}
Multiply 2 times \frac{13}{4}.
x=\frac{\sqrt{13}+13}{\frac{13}{2}}
Now solve the equation x=\frac{13±\sqrt{13}}{\frac{13}{2}} when ± is plus. Add 13 to \sqrt{13}.
x=\frac{2\sqrt{13}}{13}+2
Divide 13+\sqrt{13} by \frac{13}{2} by multiplying 13+\sqrt{13} by the reciprocal of \frac{13}{2}.
x=\frac{13-\sqrt{13}}{\frac{13}{2}}
Now solve the equation x=\frac{13±\sqrt{13}}{\frac{13}{2}} when ± is minus. Subtract \sqrt{13} from 13.
x=-\frac{2\sqrt{13}}{13}+2
Divide 13-\sqrt{13} by \frac{13}{2} by multiplying 13-\sqrt{13} by the reciprocal of \frac{13}{2}.
x=\frac{2\sqrt{13}}{13}+2 x=-\frac{2\sqrt{13}}{13}+2
The equation is now solved.
x^{2}-4x+4+\left(\frac{3}{2}x-3\right)^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+\frac{9}{4}x^{2}-9x+9=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}x-3\right)^{2}.
\frac{13}{4}x^{2}-4x+4-9x+9=1
Combine x^{2} and \frac{9}{4}x^{2} to get \frac{13}{4}x^{2}.
\frac{13}{4}x^{2}-13x+4+9=1
Combine -4x and -9x to get -13x.
\frac{13}{4}x^{2}-13x+13=1
Add 4 and 9 to get 13.
\frac{13}{4}x^{2}-13x=1-13
Subtract 13 from both sides.
\frac{13}{4}x^{2}-13x=-12
Subtract 13 from 1 to get -12.
\frac{\frac{13}{4}x^{2}-13x}{\frac{13}{4}}=-\frac{12}{\frac{13}{4}}
Divide both sides of the equation by \frac{13}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{13}{\frac{13}{4}}\right)x=-\frac{12}{\frac{13}{4}}
Dividing by \frac{13}{4} undoes the multiplication by \frac{13}{4}.
x^{2}-4x=-\frac{12}{\frac{13}{4}}
Divide -13 by \frac{13}{4} by multiplying -13 by the reciprocal of \frac{13}{4}.
x^{2}-4x=-\frac{48}{13}
Divide -12 by \frac{13}{4} by multiplying -12 by the reciprocal of \frac{13}{4}.
x^{2}-4x+\left(-2\right)^{2}=-\frac{48}{13}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{48}{13}+4
Square -2.
x^{2}-4x+4=\frac{4}{13}
Add -\frac{48}{13} to 4.
\left(x-2\right)^{2}=\frac{4}{13}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{4}{13}}
Take the square root of both sides of the equation.
x-2=\frac{2\sqrt{13}}{13} x-2=-\frac{2\sqrt{13}}{13}
Simplify.
x=\frac{2\sqrt{13}}{13}+2 x=-\frac{2\sqrt{13}}{13}+2
Add 2 to both sides of the equation.