Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2-x^{2}=\sqrt{3}-1
Subtract x^{2} from both sides.
x-2-x^{2}-\sqrt{3}=-1
Subtract \sqrt{3} from both sides.
x-2-x^{2}-\sqrt{3}+1=0
Add 1 to both sides.
x-1-x^{2}-\sqrt{3}=0
Add -2 and 1 to get -1.
-x^{2}+x-\sqrt{3}-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-\sqrt{3}-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and -1-\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-\sqrt{3}-1\right)}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\left(-\sqrt{3}-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1-4\sqrt{3}-4}}{2\left(-1\right)}
Multiply 4 times -1-\sqrt{3}.
x=\frac{-1±\sqrt{-4\sqrt{3}-3}}{2\left(-1\right)}
Add 1 to -4-4\sqrt{3}.
x=\frac{-1±i\sqrt{4\sqrt{3}+3}}{2\left(-1\right)}
Take the square root of -3-4\sqrt{3}.
x=\frac{-1±i\sqrt{4\sqrt{3}+3}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt[4]{3}i\sqrt{\sqrt{3}+4}-1}{-2}
Now solve the equation x=\frac{-1±i\sqrt{4\sqrt{3}+3}}{-2} when ± is plus. Add -1 to i\sqrt{3+4\sqrt{3}}.
x=\frac{-\sqrt[4]{3}i\sqrt{\sqrt{3}+4}+1}{2}
Divide -1+i\sqrt[4]{3}\sqrt{\sqrt{3}+4} by -2.
x=\frac{-\sqrt[4]{3}i\sqrt{\sqrt{3}+4}-1}{-2}
Now solve the equation x=\frac{-1±i\sqrt{4\sqrt{3}+3}}{-2} when ± is minus. Subtract i\sqrt{3+4\sqrt{3}} from -1.
x=\frac{\sqrt[4]{3}i\sqrt{\sqrt{3}+4}+1}{2}
Divide -1-i\sqrt[4]{3}\sqrt{\sqrt{3}+4} by -2.
x=\frac{-\sqrt[4]{3}i\sqrt{\sqrt{3}+4}+1}{2} x=\frac{\sqrt[4]{3}i\sqrt{\sqrt{3}+4}+1}{2}
The equation is now solved.
x-2-x^{2}=\sqrt{3}-1
Subtract x^{2} from both sides.
x-x^{2}=\sqrt{3}-1+2
Add 2 to both sides.
x-x^{2}=\sqrt{3}+1
Add -1 and 2 to get 1.
-x^{2}+x=\sqrt{3}+1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=\frac{\sqrt{3}+1}{-1}
Divide both sides by -1.
x^{2}+\frac{1}{-1}x=\frac{\sqrt{3}+1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-x=\frac{\sqrt{3}+1}{-1}
Divide 1 by -1.
x^{2}-x=-\left(\sqrt{3}+1\right)
Divide \sqrt{3}+1 by -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\left(\sqrt{3}+1\right)+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\left(\sqrt{3}+1\right)+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\sqrt{3}-\frac{3}{4}
Add -\left(\sqrt{3}+1\right) to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\sqrt{3}-\frac{3}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\sqrt{3}-\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{i\sqrt{4\sqrt{3}+3}}{2} x-\frac{1}{2}=-\frac{\sqrt[4]{3}i\sqrt{\sqrt{3}+4}}{2}
Simplify.
x=\frac{\sqrt[4]{3}i\sqrt{\sqrt{3}+4}+1}{2} x=\frac{-\sqrt[4]{3}i\sqrt{\sqrt{3}+4}+1}{2}
Add \frac{1}{2} to both sides of the equation.