Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-22x+121-5-11^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-11\right)^{2}.
x^{2}-22x+116-11^{2}=0
Subtract 5 from 121 to get 116.
x^{2}-22x+116-121=0
Calculate 11 to the power of 2 and get 121.
x^{2}-22x-5=0
Subtract 121 from 116 to get -5.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -22 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-5\right)}}{2}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484+20}}{2}
Multiply -4 times -5.
x=\frac{-\left(-22\right)±\sqrt{504}}{2}
Add 484 to 20.
x=\frac{-\left(-22\right)±6\sqrt{14}}{2}
Take the square root of 504.
x=\frac{22±6\sqrt{14}}{2}
The opposite of -22 is 22.
x=\frac{6\sqrt{14}+22}{2}
Now solve the equation x=\frac{22±6\sqrt{14}}{2} when ± is plus. Add 22 to 6\sqrt{14}.
x=3\sqrt{14}+11
Divide 22+6\sqrt{14} by 2.
x=\frac{22-6\sqrt{14}}{2}
Now solve the equation x=\frac{22±6\sqrt{14}}{2} when ± is minus. Subtract 6\sqrt{14} from 22.
x=11-3\sqrt{14}
Divide 22-6\sqrt{14} by 2.
x=3\sqrt{14}+11 x=11-3\sqrt{14}
The equation is now solved.
x^{2}-22x+121-5-11^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-11\right)^{2}.
x^{2}-22x+116-11^{2}=0
Subtract 5 from 121 to get 116.
x^{2}-22x+116-121=0
Calculate 11 to the power of 2 and get 121.
x^{2}-22x-5=0
Subtract 121 from 116 to get -5.
x^{2}-22x=5
Add 5 to both sides. Anything plus zero gives itself.
x^{2}-22x+\left(-11\right)^{2}=5+\left(-11\right)^{2}
Divide -22, the coefficient of the x term, by 2 to get -11. Then add the square of -11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-22x+121=5+121
Square -11.
x^{2}-22x+121=126
Add 5 to 121.
\left(x-11\right)^{2}=126
Factor x^{2}-22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-11\right)^{2}}=\sqrt{126}
Take the square root of both sides of the equation.
x-11=3\sqrt{14} x-11=-3\sqrt{14}
Simplify.
x=3\sqrt{14}+11 x=11-3\sqrt{14}
Add 11 to both sides of the equation.