Solve for x
x=20\sqrt{17}+120\approx 202.462112512
x=120-20\sqrt{17}\approx 37.537887488
Graph
Share
Copied to clipboard
\left(x-100\right)\left(300+5x-1000\right)=32000
Use the distributive property to multiply 5 by x-200.
\left(x-100\right)\left(-700+5x\right)=32000
Subtract 1000 from 300 to get -700.
-700x+5x^{2}+70000-500x=32000
Apply the distributive property by multiplying each term of x-100 by each term of -700+5x.
-1200x+5x^{2}+70000=32000
Combine -700x and -500x to get -1200x.
-1200x+5x^{2}+70000-32000=0
Subtract 32000 from both sides.
-1200x+5x^{2}+38000=0
Subtract 32000 from 70000 to get 38000.
5x^{2}-1200x+38000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1200\right)±\sqrt{\left(-1200\right)^{2}-4\times 5\times 38000}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -1200 for b, and 38000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1200\right)±\sqrt{1440000-4\times 5\times 38000}}{2\times 5}
Square -1200.
x=\frac{-\left(-1200\right)±\sqrt{1440000-20\times 38000}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-1200\right)±\sqrt{1440000-760000}}{2\times 5}
Multiply -20 times 38000.
x=\frac{-\left(-1200\right)±\sqrt{680000}}{2\times 5}
Add 1440000 to -760000.
x=\frac{-\left(-1200\right)±200\sqrt{17}}{2\times 5}
Take the square root of 680000.
x=\frac{1200±200\sqrt{17}}{2\times 5}
The opposite of -1200 is 1200.
x=\frac{1200±200\sqrt{17}}{10}
Multiply 2 times 5.
x=\frac{200\sqrt{17}+1200}{10}
Now solve the equation x=\frac{1200±200\sqrt{17}}{10} when ± is plus. Add 1200 to 200\sqrt{17}.
x=20\sqrt{17}+120
Divide 1200+200\sqrt{17} by 10.
x=\frac{1200-200\sqrt{17}}{10}
Now solve the equation x=\frac{1200±200\sqrt{17}}{10} when ± is minus. Subtract 200\sqrt{17} from 1200.
x=120-20\sqrt{17}
Divide 1200-200\sqrt{17} by 10.
x=20\sqrt{17}+120 x=120-20\sqrt{17}
The equation is now solved.
\left(x-100\right)\left(300+5x-1000\right)=32000
Use the distributive property to multiply 5 by x-200.
\left(x-100\right)\left(-700+5x\right)=32000
Subtract 1000 from 300 to get -700.
-700x+5x^{2}+70000-500x=32000
Apply the distributive property by multiplying each term of x-100 by each term of -700+5x.
-1200x+5x^{2}+70000=32000
Combine -700x and -500x to get -1200x.
-1200x+5x^{2}=32000-70000
Subtract 70000 from both sides.
-1200x+5x^{2}=-38000
Subtract 70000 from 32000 to get -38000.
5x^{2}-1200x=-38000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-1200x}{5}=-\frac{38000}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{1200}{5}\right)x=-\frac{38000}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-240x=-\frac{38000}{5}
Divide -1200 by 5.
x^{2}-240x=-7600
Divide -38000 by 5.
x^{2}-240x+\left(-120\right)^{2}=-7600+\left(-120\right)^{2}
Divide -240, the coefficient of the x term, by 2 to get -120. Then add the square of -120 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-240x+14400=-7600+14400
Square -120.
x^{2}-240x+14400=6800
Add -7600 to 14400.
\left(x-120\right)^{2}=6800
Factor x^{2}-240x+14400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-120\right)^{2}}=\sqrt{6800}
Take the square root of both sides of the equation.
x-120=20\sqrt{17} x-120=-20\sqrt{17}
Simplify.
x=20\sqrt{17}+120 x=120-20\sqrt{17}
Add 120 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}