Solve for x
x=15
x=41
Graph
Share
Copied to clipboard
1120x-20x^{2}-9200=3100
Use the distributive property to multiply x-10 by 920-20x and combine like terms.
1120x-20x^{2}-9200-3100=0
Subtract 3100 from both sides.
1120x-20x^{2}-12300=0
Subtract 3100 from -9200 to get -12300.
-20x^{2}+1120x-12300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1120±\sqrt{1120^{2}-4\left(-20\right)\left(-12300\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 1120 for b, and -12300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1120±\sqrt{1254400-4\left(-20\right)\left(-12300\right)}}{2\left(-20\right)}
Square 1120.
x=\frac{-1120±\sqrt{1254400+80\left(-12300\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-1120±\sqrt{1254400-984000}}{2\left(-20\right)}
Multiply 80 times -12300.
x=\frac{-1120±\sqrt{270400}}{2\left(-20\right)}
Add 1254400 to -984000.
x=\frac{-1120±520}{2\left(-20\right)}
Take the square root of 270400.
x=\frac{-1120±520}{-40}
Multiply 2 times -20.
x=-\frac{600}{-40}
Now solve the equation x=\frac{-1120±520}{-40} when ± is plus. Add -1120 to 520.
x=15
Divide -600 by -40.
x=-\frac{1640}{-40}
Now solve the equation x=\frac{-1120±520}{-40} when ± is minus. Subtract 520 from -1120.
x=41
Divide -1640 by -40.
x=15 x=41
The equation is now solved.
1120x-20x^{2}-9200=3100
Use the distributive property to multiply x-10 by 920-20x and combine like terms.
1120x-20x^{2}=3100+9200
Add 9200 to both sides.
1120x-20x^{2}=12300
Add 3100 and 9200 to get 12300.
-20x^{2}+1120x=12300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+1120x}{-20}=\frac{12300}{-20}
Divide both sides by -20.
x^{2}+\frac{1120}{-20}x=\frac{12300}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-56x=\frac{12300}{-20}
Divide 1120 by -20.
x^{2}-56x=-615
Divide 12300 by -20.
x^{2}-56x+\left(-28\right)^{2}=-615+\left(-28\right)^{2}
Divide -56, the coefficient of the x term, by 2 to get -28. Then add the square of -28 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-56x+784=-615+784
Square -28.
x^{2}-56x+784=169
Add -615 to 784.
\left(x-28\right)^{2}=169
Factor x^{2}-56x+784. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-28\right)^{2}}=\sqrt{169}
Take the square root of both sides of the equation.
x-28=13 x-28=-13
Simplify.
x=41 x=15
Add 28 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}