Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x=x-1
Use the distributive property to multiply x-1 by x.
x^{2}-x-x=-1
Subtract x from both sides.
x^{2}-2x=-1
Combine -x and -x to get -2x.
x^{2}-2x+1=0
Add 1 to both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{0}}{2}
Add 4 to -4.
x=-\frac{-2}{2}
Take the square root of 0.
x=\frac{2}{2}
The opposite of -2 is 2.
x=1
Divide 2 by 2.
x^{2}-x=x-1
Use the distributive property to multiply x-1 by x.
x^{2}-x-x=-1
Subtract x from both sides.
x^{2}-2x=-1
Combine -x and -x to get -2x.
x^{2}-2x+1=-1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0
Add -1 to 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-1=0 x-1=0
Simplify.
x=1 x=1
Add 1 to both sides of the equation.
x=1
The equation is now solved. Solutions are the same.