Solve for x
x=\frac{y+18}{y+1}
y\neq -1
Solve for y
y=-\frac{x-18}{x-1}
x\neq 1
Graph
Share
Copied to clipboard
xy+x-y-1=17
Use the distributive property to multiply x-1 by y+1.
xy+x-1=17+y
Add y to both sides.
xy+x=17+y+1
Add 1 to both sides.
xy+x=18+y
Add 17 and 1 to get 18.
\left(y+1\right)x=18+y
Combine all terms containing x.
\left(y+1\right)x=y+18
The equation is in standard form.
\frac{\left(y+1\right)x}{y+1}=\frac{y+18}{y+1}
Divide both sides by y+1.
x=\frac{y+18}{y+1}
Dividing by y+1 undoes the multiplication by y+1.
xy+x-y-1=17
Use the distributive property to multiply x-1 by y+1.
xy-y-1=17-x
Subtract x from both sides.
xy-y=17-x+1
Add 1 to both sides.
xy-y=18-x
Add 17 and 1 to get 18.
\left(x-1\right)y=18-x
Combine all terms containing y.
\frac{\left(x-1\right)y}{x-1}=\frac{18-x}{x-1}
Divide both sides by x-1.
y=\frac{18-x}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}