Solve for x
x\geq -3
Graph
Share
Copied to clipboard
x^{3}-1-9-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
Use the distributive property to multiply x-1 by x^{2}+x+1 and combine like terms.
x^{3}-10-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
Subtract 9 from -1 to get -10.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+x\left(3x-2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+3x^{2}-2x
Use the distributive property to multiply x by 3x-2.
x^{3}-10-2x\leq x^{3}+3x-1-2x
Combine -3x^{2} and 3x^{2} to get 0.
x^{3}-10-2x\leq x^{3}+x-1
Combine 3x and -2x to get x.
x^{3}-10-2x-x^{3}\leq x-1
Subtract x^{3} from both sides.
-10-2x\leq x-1
Combine x^{3} and -x^{3} to get 0.
-10-2x-x\leq -1
Subtract x from both sides.
-10-3x\leq -1
Combine -2x and -x to get -3x.
-3x\leq -1+10
Add 10 to both sides.
-3x\leq 9
Add -1 and 10 to get 9.
x\geq \frac{9}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x\geq -3
Divide 9 by -3 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}